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As requested by the National Science Foundation (NSF)
and the Interagency committee for Extranuraa Mathematics Programs
(ICEMAP), this report updates the 1984 Report known as the "David
Report." Specifically, the charge directed the committee to (1)
update that report, describing the infrascruccure and support for
U.S. mathenatical sciences research; (2) assess trends and progress
over the intervening five years against the recommendations of the
1984 Report; (3) briefly assess the field scientifically and identify
significant opportunities for research, including cross-disciplinary
collaboration; and (4) make appropriate recoamendatious dea4ned to
ensure that U.S. mathematical sciences research will meet national
needs in coming years. Of the several Components of the mathematical
sciences community requiring action, its welispring--university
research departments--is the primary focus of this report. The
progress and promise of research--described in the 1984 Report
relative to theoretical development, new applications, and the
refining and deepenimg of oll applications --have if anything
increased since 1984, making mathematics research ever more valuable
to other sciences and technology. Although some prcgress has been
made since 1984 in the support for mathematical sciences research,
the goals set in the 1984 Report have not been achieved. Practically
all of the increase in funding has gone into building the
infractructure, which had deteriorated badly by 1984. While graduate
and postdoctoral research, computer facilities, and new institutes
have benefited from increased resources, scae of these areas are
still undersupported by the standards of other sciences. And in the
area of research support for individual investigators, almost no
progress has been made. A critical storage of qualified mathematical
sciences researchers still looms, held at bay for the moment by a
large influx of foreign researchers, an uncertain solution in the
longer term. While government has responded substantially to the 1984
Report's recommendations, particularly in the support of
infrastructure, the universities generally have not, so that the
academic foundations of the mathematical sciences research enterprise
are as shaky now as in 1984. The greatet progress has been made in
the mathematics sciences community, whose members have shown a
growing awareness of the problems confronting their discipline and
increased interest in dealing with the problems, particularly in
regard to communication with the public and government agencies and
involvement in education. (AA)
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The National Research Courwil established dm Board on
Mathematical Sciences in 1984. The objectives of the Boanl
air to maintain awareness and active concern for the health
of the mathanatical sciences and to serve as the focal milt
in the National Research Council for issues affecting the
mathematical sciences. The Board holds symposia and
workshops and prepares reports on emerging issues and
turas of research, conducts studies for fekral agemies, and
maintains liaison with the mathematical sciences communi-
ties, academia, professional societies, and industry.

The Board on Mathanatical Sciences gratefully acknowl-
edges ongoing core !Almon arK1 cuppon for this study from
the following federal agencies of ICEMAP (Interagency
Committee for Extramural Mathematics Programs):

Air Force Office of Scientific Research

Army Research Office

Depanment of Energy

National Science Foundation

National Security Agency

Office of Naval Research

The Board gratefully acknowledges support from the
National Research Council for the dissemination of this
report.
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This report, Renewing U.S. Mathematics: A Plan for the 1990s, updates
the 1984 "David Report," which recommended a national plan to renew and
ensure the health of the U.S. mathematical sciences enterprise. The
new report, presenting the committee's assessment of progress mark.
since 1984, communicates a sense of promise and achievement, but also
the conviction that further corrective action is urgently needed to
ensure the vitality of U.S. mathematics.

Substantial progress can be seen in increased federal support for
graduate education and postdoctoral researchers, as well as in stronger
leadership and improved cohesiveness within the mathematical sciences
community. Yet major problems remain: the continuing inadequacies in
support for mathematical sciences research, especially for principal
investigators; the slow response on the part of many members of the
mathematical sciences community to the serious issues of renewal; and
the absence of a concerted response by universities to problems clearly
described six years ago. The high drop.out rate from mathematical
sciences career paths warns that U.S. mathematical research faculties,
institutions, and education at all levels must be renewed.

At the same time, this report's presentation of some of the exciting
recent achievements in mathematical sciences research, as well as rhe
wealth of opportunities for future research and applications, points
to the promise of what is achievable in the mathematical sciences and
by extension in U.S. science and technology.

We have an opportunity now to deal with the issues confronting the
mathematical sciences community and the nation, especially the
challenge of attracting and educating tomorrow's professors and
researchers. This report recommends specific actions to address those
issues. 1 commend it to your attention.

Frank Press
Chairman
National Research Council
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Dr. Frank Press
Chairman, National Research Council

Dear Frank:

In submitting to you the report of the Committee on the Mathematical
Sciences; Status and Future Directions, let me include some coms.nts
and observations which are unusual for a letter of transmittal. I do
so in hopes that their message will be promulgated and heard, not only
in the National Academies but more widely.

Nine years ago you asked me to chair the Ad Hoc Committee on Resources
for the Mathematical Sciences, to review the intellectual health of
mathematical research in the United States and do an in-depth analysis
of federal support for the field. As a communications engineer who
could trace his roots back through his thesis advisor Jerry Wiesner to
the great mathematician Norbert Wiener, and as a science administrator
who had seen first-hand the enormous impact of mathematics and
mathematicians, first at Bell Laboratories and later at Exxon Research
and Engineering, I was pleased to accept. You gave me a superb
committee to do the work.

You are as familiar as I am with what we found: a field brimming with
intellectual vitality, preeminent in the world, and poised to make even
greater contributions to science and technology, yet a field in which
the research infrastructure had eroded, in part because federal support
had been allowed to deteriorate. In 1984 the ad hoc committee
recommended a coordinated set of actions to be taken by government,
universities, and the mathematical community over five to ten years to
rebuild the infrastructure and enable mathematics to renew itself.

Halfway through that decade you asked me to chair a different but
equally distinguished committee, on behalf of which I am now reporting.
We were to assess progress made in implementing the 1984
recommendations. I was happy to accept because I remain vitally
concerned with the health of U.S. mathematics. Our report tells what
has happened in the five years since we published agEEEIELL__U.S
Mathematics; Critical Reso_u_r_c_v_ for Ow Future and this second report
recommends what to do now. Our message is in one sense vary simple:
balance between support for the mathematical sciences and support for
related fields must be restored: stay the course, see it through. We
do suggest, however, a modification of the original plan for renewal

.

tying it more closely to human resource issues and concentrating
attention on the pipeline which develops mathematical and scientific
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talent--,ssues which loom much larger in the minds of all of us today
than they did five years ago. This modification may require some
policy caanges in federal agencies, drawing their research and
educational missions closer together. It will certainly require strong
commitment and bold action by the mathematical sciences community,
working in conjunction with the research universities.

Let me end with a personal perspective. Overall, I am both pleased
and puzzled by progress since 1984--pleased because strong leadership
by indivi6uals in government and the mathematical sciences community
has brough.: substantial progress, creating movement toward renewal, yet
puzzled by three matters:

1. th- general membership of the mathematical sciences community,
un.ike its leadership, seems only beginning to grasp either the
na:ure or seriousness of its renewal problems, problems that are
being compounded by the greatly increased need to attend to
revitalization of mathematics education;

2. the lack of concerted action by the research universities or
their leaders, either in calling attention to the problems of
mathematical research funding or in bolstering their
mathematical sciences departments; and

3 tle inability of the science policy mechanisms of government to
dAal decisively with a funding problem as easily soluble and
vitally important as the one we pointed out back in 1984

On the first point. I plan to continue the work I began five years ago,
of encouraging the mathematical sciences community to act vigorously,
and am ;lappy to see the intense dialogue which is shaping up for 1990
within the community. As former directors of the Office of Science and
Technology Policy, we are not very surprised by points 2 and 3. But,

for MN own part, I remain somewhat dittressed by them. Perhaps we can
join !..ogether in carrying a message tr government and the universities.
If the mechanisms of science policy cannot solve this critical problem
in mathematics, it is doubtful whether they can solve any problem at
all.

Sincerely,

leZcs,
Edward E. David, Jr.
Chairman. Committee on the

Mathematical Sciences
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Executi . z Summary

RENEWING U.S. MATHEMATICSTHE 1984 REPORT

In 1981 a committee of the National Research Council was formed to
investigate the health of the mathematical sciences' in the United
States. Its 1984 report, Renewing U.S. Mail ernatics: Critical Resource for
the Future (the "David Report"),2 found that although the tield was
thriving intellectually, government support had deteriorated to a dan-
gerously low level. Moreover, the number of young people entering
the mathematical sciences had decreased to a level inadequate to re-
plenish the field. In particular, the number of productive mathemati-
cal scientists was projected to decline sharply in the 1990s when the
current generation of senior researchers retires. This decline was ex-
pected to have serious consequences for the nation's scientific and
engineering research effort because of the fundamental role of mathe-
matics in the exact sciences. Today a shortage of mathematicians
takes on added urgency as we recognize mathematics education as a
national priority.

The 1984 Report recommended a plan for renewal, the National Plan
for Graduate and Postdoctoral Education in the Mathematical Sci-
ences. That plan's essential feature was a call for funding to bring
support for the mathematical sciences into balance with support for
the physical sciences and engineering. The interdisciplinary commit-
tee that wrote the 1984 Report quickly realized that the low level of
re,warch support for U.S. mathematical sciences was so sever-2 that it
threatened the vitality of the entire scientific enterprise: the enormous
disparity in the number of people supported in the mathematical sci-

1 6
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EXECWWE SUMMARY

ences vis-a-vis other sciences and engineering meant that support for
the overall science and technology base was in poor balance, thus
threatening its effectiveness. Solving the problem of inadequate sup-
port fur the mathematical sciences was therefore necessary as much to
restore a healthy balance to the nation's scientific enterprise as to
assure a healthy mathematics research capability. Without attempting
to define Ideal" balance, the 1984 Report recommended levels of
support for research and researcher training in the mathematical sci-
ences that would eliminate at least the gross imbalance documented
there. Their actions in response to the 1984 Report make it clear that
the mathematical sciences community and the federal funding agen-
cies have accepted the conclusions that an imbalance existed and needed
to be countered.

THE CURRENT REPORTA PLAN FOR THE 19cOs

As requested by the National Science Foundation (NSF) and the Inter-
agency Committee for Extramural Mathematics Programs (10,MAP),
this report updates the 1984 Report. Specifically, the charge directed
the committee to (1) update that report, describing the infrastructure
and support for U.S. mathematical sciences research; (2) assess trends
and progress over the intervening five years against the recommenda-
tions of the 1984 Report; (3) briefly assess the field scientifically and
identify significant opportunities for research, including cross-disci-
plinary collaboration; and (4) make appropriate recommeadations
designed to ensure that U.S. mathematical sciences research will meet
national needs in coming years.

Of the several components of the mathematical sciences community
requiring action, its wellspringuniversity research departmentsis
the primary focus of this report.3 The progress and promise of re-
searchdescribed in the 1984 Report relative to theoretical develop-
ment, new applications, and the refining and deepening ol old appli-
cationshave if anything increased since 1984, making mathematics
research ever more valuable to other sciences and technology.

However, although some progress has been made since 1984 in the
support for mathematical sciences research, the goals set in the 1984
Report have not been achieved (Table A). Practically all of the in-
crease in funding has gone into building the infrastructure, which had
deteriorated badly by 1984. While graduate and postdoctoral research,
computer facilities, and new institutes have benefited from increased

1 7



EXECUTIVE SUMMARY

TABLE A Federal Support of Mathematical Sciences Research
Progress Over Five Years, 1984 to 1989

Category of Support

1984
National
Plan
Coal

1984
Level

Percent
Change,

1989 1984 to
Level 1989

Percent of 1984
National Plan
Coal Reached
by 1989

Number of researchers
supported

Senior investigators 2600 1800 1900 +6 73

Postdoctoral researchers 400' 132 188b +42 47

Graduate research
assistants 1000 411 6616 +61 66

Total dollars (millions) 225' 996' 133 +34 59

"The 1984 National Plan calls for awarding 200 two-year postdoctorals annually,
resulting in a population of 400 at any given time.

bMost recent counts comparable to the 1984 numbers, from fail 1988. (NSF Division
of Science Resources Studies, personal communication.)

9984 National Plan goal adjusted for inflation using Higher Education Price Index;
revised National Plan goal is 5250 million.

dIn 1989 dollars, using Higher Education Price Index.

resources, some of these areas are still undersupported by the stan-
dards of other sciences (Table M. And in the area of research support
for individual investigators, almost no progress has been made. A
critical shortage of qualified mathematical sciences researchers still
looms, held at bay for the moment by a large influx of foreign re-
searchers, an uncertain solution in the longer term.

While government has responded substantially to the 1984 Report's
recommendations, particularly in the support of infrastructure, the
universities generally have not, so that the academic foundations of
tl'e mathematical sciences research enterprise arc as shaky now as in
1984. The greatest progress has been made in the mathematical sci-
ences community, who a members have shown a growing awareness
of the problems confronting their discipline and increased interest in
dealing with the problems, particularly in regard to communication
with the public and government agencies and involvement in educa-
tion.

3
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TABLE B Selected Indicators of Imbalance in
Research Support

Chemistry Physics
Mathematical
Sciences

Percent of
R&D faculty
with federal
support, 1987 56 75 37

Number of
postdoctorals
with federal
support, 1988 2587 1280 188

Percent of
graduate students
with research
support, 1987 49 51 18

SOURCES: Faculty percentages from National Research Council,
Survey of Doctorate Recipients project (personal communication);
other entries from National Science Foundation, Division of Science
Resources Stu... (personal communication).

In addition to being essential to the continued vitality of U.S. science
and technology, addressing the problems of the health and renewal of
the U.S. mathematical sciences research enterprise offers the added
benefit of contributing directly to solving the critical problems of
mathematics education in America. Without the vital nerve center of
a healthy and self-renewing research enterprise in university mathe-
matical sciences departments, all the other aspects of our necessary
national effort to improve mathematics education will be slowed and
inhibited. The need for replenishment of university research faculties
is greater and more uncertain in the decade of the 1990s than ever
before, and the effects of a deterioration will be felt not only in re-
search production, but also in the educational preparation of scientists
and engineers generally, of mathematical scientists and teachers, and
of a scientifically and mathematically literate public.

1 9



EXECUTIVE SUMMARY

CONCLUSIONS AND RECOMMENDATIONS

I. Implement the 1984 Report's National Plan

Conclusion: Progress has been made in carrying out the 1984 Report's
National Plan, but support for the mathematical sciences remains seriously
out of klance with that for the other sciences and engineering. The numbers
of supported senior investigators, graduate research assistants, 'and postdoc-
toral researchers are still seriously out of line with the numbers supported in
other sciences of comparable size.

Since 1984 there have been significant increases in support for mathe-
matical sciences graduate student and postdoctoral researchers, but
no meaningful increase in the number of senior researchers supported.
The numbers of currently supported graduate student and postdoc-
toral researchers are still far short of the goals set in the 1984 National
Plan, and the number of senior researchers supported remains ap-
proximately 700 short of the goal.

The National Science Foundation has substantially increased support
for the mathematical sciences, as has the Department of Defense, which
has established new programs at the Defense Advanced Research
Projects Agency and the National Security Agency. The Department
of Energy has funded a major effort in computational mathematics.
Other government agencies have provided only moral support. The
mathematical sciences community has responded actively to the chal-
lenges posed in the 1984 National Plan.

Recommendation I: Fully implement the 1984 National Plan
while increasing the level of annual federal funding for the
mathematical sciences to $250 million from $133 million (in
1989 dollars) over the next three years. The 1984 National
Plan's goal of $180 million per year has risen due to inflation to
$225 million, to which is added $25 million per year for imple-
menting the second thrust of Recommendation 1,, below.

II. Improve the Mathematical Sciences Career Path

Conclusion: The rate at which young people enter the mathematical sciences
remains inadequate to renew the field.

5
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EXECUTIVE SUMMARY

The attrition rate for students in the mathematical sciences is 50% per
year, the highest among all scientific fields. The recent replrt by W.G.
Bowen and J.A. Sosa4 predicts a severe shortage of mathematical and
physical scientists for academic positions during the 1990s. Similar
shortages are expected tor government and industrial positions. This
committee believes that bright young people are discouraged from
pursuing careers in the mathematical sciences because they find their
career prospects are dim. Mathematical sciences departments in uni-
versities provide much less opportunity for research, fewer graduate
research assistantships, and far fewer postdoctoral research positions
than do other science departments. Students are quick to perceive
this.

Corrective action is needed to assure an adecylate supply of talented
students for the mathematical sciences. Professors must show stu-
dents that the mathematical sciences offer both intellectual excitement
and attractive career prospects. Providing intellectual excitement is
the responsibility of the mathematical sciences community. To per-
ceive attractive career prospects, students must see in their own mathe-
matics departments active, successful research enterprises that involve
graduate students, young faculty, and senior researchers, all supported
at levels competitive with those in the other sciences and engineering.

Recommendation 11: Improve the career path in the m .the-
matical sciences. Specifically,

The funding called for in Recommendation I should
be used to increase the numbers of senior, junior, and post-
doctoral researchers, and graduate research assistants sup-
ported. This committee reiterates the 1984 call for annual
federal support for 200 senior investigators, 200 new postdoc-
tor il researchers, 1040 graduate research assistants, atu; 400
research grants for young investigators.' At these levels of
support the mathematical sciences would be renewed by an
influx of fresh talent, and the nation could realize fully the
scientific potential of some 700 first-rate senior researchers
who now lack federal support. Finally, funding for the mathe-
matical sciences would be brought into balance with levels of
funding for other science and engineering fields. Until the
present clear imbalance is countered, students will continue to
find the mathematical sciences less attractive than other fields,
and renewal of US. mathematics will fail.

6
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Ten percent of the funding called for in Recommenda-
tion I should support coherent programs that directly encour-
age young people to enter and remain in mathematical sci-
ences careers. Recruitment of women and minorities into the
mathematical sciences is a high priority. The NSF and other
government agencies should solicit research proposals for
programs that will improve the career path. Such proposals
may combine research opportunities for students, postdoctor-
als, and young faculty ivith increased support for senior te-
searchers who can act as mentors. Proposals may be submitted
by whole departments, faculty groups (possibly with members
from different departments), or individuals. Special criteria
may be required to judge such proposals.

Academic mathematical sciences departments should
give increased recognition to faculty who act as mentors for
students and Junior colleagues, who contribute to education,
and who interact with collaborators from other disciplines.
This change would encourage efforts to improve the teaching
of mathematics both at the undergraduate and graduate levels.

Universities should do more to strengthen their mathe-
matical sciences departments. Universities should give these
departments adequate resources to meet the responsibility of
preparing large numbers of science and engineering students
while also providing adequate resources for research training
in the mathematical sciences.

III. Support a Sufficient Number of Individual Investigators

Conclusion: Mathematical sciences research has been extraordinarily pro-
ductive over the past five years.

Striking progress has been made along a broad front, from the most
abstract branches of core mathematics to computer algorithms for the
most practical problems. Appendix B of this report documents some
of the main trends. As remarkable as recent mathematical research
has been, a substantially greater rate of progress is possible because
the mathematical sciences enterprise is running well below its attain-
able productivity. Most mathematical sciences research is done by
some 2600 highly active investigatorsa conservative estimateof

7
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whom about 700 are entirely tmsupported by federal funds. A sub-
stantial fraction of these 700 lack even the two months of uninter-
rupted research time provided by typical grants. Because these mathe-
matical mientists are highly productive, small investments in support
can produce large payoffs in the form of major advances. Since the
mathematical sciences have so strong an impact on science and tech-
nology, this opportunity should not be wasted.

Recommendation III: Increase to 2600 the number of mathe-
matical sciences senior investigators supported annually. As
explained in Conclusion II, this is also a basic step to meeting
the problems of renewal. It is the one funding recommenda-
tion in the 1984 National Plan on which no meaningful action
has been taken. The time has come to take full advantage of
the remarkable scientific opportunities offered by the mathe-
matical sciences.

These overarching recommendations suggest particular actionsby
federal agencies, universities, department chairs and university ad-
ministrators, and the mathematical sciences communitythat are
specified in Chapter 5 of this report.

Underpinning these recommendations, and adding urgency to them,
is the belief held by the committee that a vigorous mathematical sciences
research enterprise is crucially important to the task of upgrading
mathematics instruction in our primary and secondary schools and at
the collegiate level. As Morris Tanenbaum, vice-chairman of AT&T
and a member of this committee, expressed it:

Everything you read about our children's education makes you weep because
so many of them can't add, subtract, or understand a simple formula, Every-
thing you read says that many of their TEACHERS can't teach them those
simple, necessary skills. You ask: "Where do the teachns come from?" The
teachers come from undergraduate schools, where they haven't had any sig-
nifkant education in mathematics. Then you ask: "Who teaches the teachers?
Who will really teach them from a first-rate point of viewr Their professors
must come from good schools that attract and educate people who are truly
interested in mathematics. All the information we've seen tells us that the
community that produces professors in the mathematical sciences is threat-
ened, and weak, and should be rebuilt.

Mathematics plays an essential role at all levels of the educational process,
particularly in science and engineering. We must have excellence at the top
to have excellence down the line. Research mathematicians train gradu-
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ate sh.dents who go on to teach in the nation's colleges. Mathematics
researchers receive their training from active researchers in university
research departments. So, too, do most college teachers, whether they
become rescarthers or not. U.S. postsecondary mathematics educa-
tion and mathematics research are interdependent, and the university
department is their nexus. College teachers in turn train the next
generation of primary and secondary school mathematics teachers.
This process is producing too few teachers who are qualified to teach
mathematics. Yet it is at the primary and secondary school levels that
students often .decide that they can or cannot undertake careers in
science or engineering. Today mathematics is too often a barrier that
discourages students from making ambitious career choices. This is
particularly true for minority and women students. Major initiatives
in mathematics of the kind recommended in this report thus play a
crucial role in strengthening mathematics education at all levels and
hence in assuring that the United States will be internationally
competitive. Indeed, the committee believes that the health and vigor of the
mathematical sciences is a vital index in judging the prospects for national
attempts to solve the science-based problems of U.S. society.

NOTES

'The disdpline known m the mathematical sciences encompasses core (or pure) and
applied mathematics, plus statistics and operations research, and extends to highly
mathematical areas of other fields such as theoretical computer science. The theoretical
branches of many other iieldsfor instance, biology, ecology, engineering, economics
merge seamlessly with the mathematical sciences.

'National Research Council, Renewing U.S. Mathematics: Critical Resource for the
Future (National Academy Press, Washington, D.C., 1984).

'Additional reporta on critical issues in the mathematical sciences are forthcoming
from the Mathematical Sciences in the Year 2000 Committee, whose final report late in
1990 will detail many crucial recruitment and education reforms needed into the twenty-
first century.

'Bowen, W.C., and Sosa, J.A., Prospects for Faculty in the Arts & Sciences (Princeton
University Press, Princeton, NJ., 1989).

'These goals, developed in the 1984 Report, pp. 57-65, were examined by the com-
mittee and found to be still valid today.

"National Research Council, Renewing U.S. Matheratics, 1984, pp. 61-64.
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1 Background and Introduction

THE SITUATION IN 1984

In the early 1980s the Office of Mathematical Sciences of the National
Researcl- Council (NRC), chaired by William Browder, presented to
the Assembly of Matlwmatical and Physical Sciences' of the NRC star-
tling evidence suggesting the deterioration of federal support for
mathematical sciences2 research in the United States. Because of the
critical dependence of science and technology on continued genera-
tion of new mathemafical methods and concepts, the Ad Hoc Commit-
tee on Resources for the Mathematical Sciences was established by the
NRC to review the health and support of the field. This panel of
scientists, engineers, and mathematicians was asked in particular to
determine whether federal and/or university support had in fact dete-
riorated and, if so, how this had come about and what should be done
about it to provide for the future health of the discipline.

After three years of investigation and analysis, the ad hoc committee
presented its findings and recommendations in Renewing U.S. Mathe-
matics: Critical Resource for the Future (the "David Report"; National
Academy Press, Washington, D.C., 1984), referred to herein as the
1984 Report. It told a story that was deeply disturbing to both practi-
tioners and policymakers in science:

Federal support for mathematical sciences research had come to be
markedly out of balance with support for related fields of science and engi-
neering. Discrepancies in support for essential research needs were very
large. The 1984 Report summarized that committee's estimate of the
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number of funded senior investigators needed in the mathematical
sciences as follows (p. 64):

Apply to the mathematics faculty the lowest percentage for tliose with federal
support in other Nelda, 54% (from a 1980 National Sdence Foundation report).
One obtains 2400 as a base figure for the number of mathematicians to sup-
port. The mathematical sdences faculty is 1.3 times the size of that in mathe-
matics. suggesting that ... 3100 is about right for the number of mathematical
edence faculty members on grants. From this, subtract 400 young investiga-
tor!' (Ph.D. age three to five years), to obtain 2700 as an appropriate number of
established investigators. . . . Guido Weiss of our Committee surveyed chair-
men of mathematical science departments nationally, asking them to examine
their faculties and Judge how many researchers without support were doing
research of the quality done by those with support. Extrapolation from the
responses led to the estimate 2600-2900 for the total of "supported° plus "equally
qualified." . . we adopt 2600 as the threshold level for the number of Pstab-
lashed investigtoors to support.

Goals given in the 1984 Report for other categories of support were
estimates of the numbers of young people needed at each stage in the
mathematical sciences pipeline in order to replenish this necessary
core of 2600 senior researchers at the rate of some UV per year.

This situation had come about through a combination of (1) abrupt
losses of support f-r mathematics in the five-year period from 1968 to 1973
caused by shifts in federal policy (e.g., the Mansfield Amendment, fellowship
cutbacks), and (2) steady deterioration of support over the decade 1973 to
1983, during which the growth of computer science as a discipline and
the practice of lumping this field together with mathematics in aggre-
gate federal research data masked the deterioration of funding for the
mathematical sciences.

The infrastructure supporting the mathematical research enterprise
had been seriously weakened, especially in university mathematical sci-
ences departments, which contained 90% of the mathematical research-
ers, with the result that the field was in serious danger of being unable
to renew itself.

This weakening had also gone largely unnoticed, for two closely
related reasons: (1) the mathematical sciences community did not bring
its growing problems to the attention of the broader scientific commu-
nity until the early 1980s; and (2) the spectacular performance of Ameri-
can mathematics, which had risen to a position of world leadership in
the decades immediately following World War II, continued unabated
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FIGURE 1.1 Research time in universities, Jovember 1978 to Octot2r 1979.
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sponsored

SOURCE: From National Science Foundation Report 81-323, reprinted from Na-
tional Research Council, Renewing U.S. Mathematics: Critical Pesource for the Future (Na-
tional Academy Press, Washington, D.C., 1984), p. 32.

throughout the 1970s, relying heavily on creative talent developed
and incorporated into the field before the deterioration began to take
its toll.

The conclusions of the 1984 Report were supported by data such as
that given in Figures 1.1 and 1.2 and in Table 1.1, which are reprinted
here from that report. These data document the imbalances in support
experienced at that time by the U.S. university mathematics sector.
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Then, as now, the academic research communities of mathematics,
chemistry, and physics were of comparable size. However, the num-
bers of active mathematical scientists and trainees who were sup-
ported, and thus encouraged to perform or learn to perform research,
were strikingly out of balance with the numbers support& ir chemis-
try and in physics. The low ratios of graduate research assistants per
mathematical researcher and postdoctoral researchers per mathemati-
cal researcher pointed to a great many missed opportunities for better
training of young people.

In fact, there were so few research grants in mathematics that many
qualified researchers were without support, while the level of support
for graduate students and postdoctoral researchers was so low that
the mathematics Ph.D. pipeline suffered both in quality and quantity.
There was clear evidence that the field was not renewing itself and
therefore legitimate concern that research progress would diminish in
the future. The prospect of becoming a professional mathematician
had begun to look less and less inviting to students.

Chemistry Physics Materials
science

Computer Mathematics
science

FIGURE 1.2 Graduate students with research assistantships enrolled full-time in doc-
torate-granting institutions, mathematical and physical sciences.

SOURCE: From National Science Foundation Report 82-260, reprinted from Na-
tional Research Council, Renewing U.S. Mathematics: Critical Resource for the Future
(National Academy Press, Washington, D.C., 1984), p. 33.
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TABLE 1.1 Postdoetorals in Graduate Institutions, 1981

Federally Non-Federally
Total Supported Supported

Chemistry 2870 2465 405
Physics 1450 1217 233
Mathematical

Sciences 99 56 43

*This number excludes about 75 university-sponsored "research
irtatructors" in mathematics.

SOURCE: National Zdence Foundation; reprinted from National
Research Council, Renewing U.S. Mathematics: Critical Resource for the
Future (National Academy Press, Washington, D.C., 1984), p. 33.

This situation developed during the 1970s, largely due to causes
mentioned above. Rather than arguing for increasing Ph.D. prouuc-
tion and hiring, mathematical sciences departments adapted to in-
creased teaching responsibilities by expanding the use of graduate
teaching assistants, thus freeing up some faculty time for research, but
at the expense of providing quality research training for those enter-
ing the field.

The noteworthy productivity of mathematics researchers in 1984, as
now, was at least partly due to a trio of singular events: the emer-
gence of mathematics tools from World War II, the post-Sputnik alarms,
and the ongoing expansion of the field as computer use widened the
demand for mathematics. As the first two of those stimuli fade, the
intellectual momentum they sparked is certain to run out. Just as
today's mathematicians are prolific due in part to events and support
levels of decades ago, tomorrow's mathematics will suffer because of
the more recent underfunding and concomitant fading of career op-
portunities.

IMBALANCE IN SUPPORT FOR RESEARCH

The interdisciplinary committee that wrote the 1984 Report quickly
realized that problems resulting from insufficient research support for
U.S. mathematical sciences were so severe that they threatened the
entire scientific enterprise. Due to the enormous disparity in the
number of people supported in the mathematical sciences vis-à-vis
other sciences and engineering, the overall science and technology
base was in poor balance, thus threatening its effectiveness. Revers-
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ing the underfunding of the mathematical sciences was therefore
necessary as much to restore a healthy balance to the overall scientific
enterprise as to assure a healthy mathematics research capability. The
1984 committee concluded that the extr-eme imbalance in the numbers
of junior people involved in research, while partly attributable to the
differing needs of laboratory and nonlaboratory fields, nonetheless
indicated a distinct shortcoming in mathematical sciences researcher
training. Without attempting to define 'ideal' balance, that group
was able to make recommendations for levels of supported research
designed to restore balance. The actions of the mathematical sciences
community and the federal funding agencies in response to the 1984
Report make it clear that they have accepted the conclusions that an
imbalance existed and needed to be countered.

Balance does not necessarily imply funding pargy, nor the achieve-
ment of equity between fields; rather, it implies supporting each field
of science to whatever degree is required to keep it and the totality of
science functioning efficiently. The 1984 committee saw the science
and engineering disciplines as an ecosystem: while the components
have different needs and roles, they must all function in a balanced
way for the system as a whole to thrive.

The present committee agrees with this analysis and believes that
elimination of the imbalance documented clearly in the 1984 Report
and still present, as demonstrated by Table B (Executive Summary)
and Tables 2.3 and 2.4 (Chapter 2) of this reportis still the most
pressing need of the mathematical sciences as a field. Since the argu-
ments and underlying premises of the 1984 Report were widely ac-
cepted, the present report does not reargue that case but instead refers
the reader to the Executive Summary of the 1984 Report, reprinted in
this report as Appendix A.

THE 1984 NATIONAL PLAN

The 1984 Report challenged the Administration and the Congress, the
universities, and the mathematical sciences community to implement,
through a decade or more of sustained effort, a national plan for re-
newing Le mathematical research enterprise in the United States. The
seven principal elements of this 1984 National Plan for Gradvate and
Postdoctoral Education in the Mathematical Sciencesdiscussed in
Section IV of Appendix Acalled for the following:
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Restoring a reasonable degree of balance between federal sup-
port for mathematical sciences research and support for related fields
by increasing mathematics support from $79 million to $180 million
per year over a five-year period (figures in 1984 dollars);

Restructuring the general pattern of use of resources, once they
were made available to the mathematical sciences, by moving away
from a pattern of small research grants supporting only principal
investigators, which was especially prominent at the National Science
Foundation (NSF), and toward a grants model consistently supporting
graduate students, postdoctorals, and other components of the re-
search infrastructure as wel1.5 Briefly, the 1984 National Plan called
for annual summer support for 2600 senior investigators, 24-month
research positions for 200 postdoctorals, 15 months plus two summers
of research support for 1000 graduate students, and 400 research grants
for young investigators. These goals were based on the premise that
more young mathematical scientists need thorough training with
mentors.

Reducing the unusual dependency of the mathematical sciences
on the NSF and the service agencies of the Department of Defense
(DOD) by fostering development of new mathematics programs at
other agencies, especially programs concerned with research having
long-term payoffs;

Extending the lines of contact and support outward from the
mathematical sciences departments to business and industry;

Initiating within research ...niversities in-depth reviews of the
health of their mathematical sciences departments, focusing on the
working circumstances of their faculties, the relationship of federal
support to university support, and the widespread university practice
of justifying allocations to mathematics departments solely on the
basis of the department's instructional role;

Developing within the mathematical sciences community a
greater sense of responsibility for its own fate and a greater unity of
purpose and action, drawing together professional organizations from
across the varied subdisciplines to act in concert in (1) presenting
regularly to government and universities the research needs of the
field; (2) creating a long-term, coordinated public information effort
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aimed at increasing understanding of the roles and the importance of
mathematics in science, technology, and culture; and (3) accelerating
the efforts of mathematical scientists to attract brilliant young people
into their field; and finally

Expanding the mathematical sciences community's commitment
to and involvement in the revitalization of mathematics education,
with special attention to the precollege level.

The present committee reconsidered the 1984 National Plan and deter-
mined that its goals remain valid and necessary today.

Complete implementation of the 1984 National Plan would assure the
continued replenishment of the field's personnel base with talented
new scientists. This, in turn, would assure continued intellectual
production by the discipline. This intellectual output is valuable in
itself, cont:ibutes substantially to other quantitative fields, provides
the environment necessary for training mathematical scientists and
educators, andwhen explained wellserves as a beacon to draw
students into the mathematical sciences.

THE CURRENT REPORT

Purpose and Emphasis

This report was prepared at the request of the NSF and the Inter-
agency Committee for Extramural Mathematics Programs (ICEMAP).
Specifically, this committee was charged to (1) update the 1984 Re-
port, describing the infrastructure and support for U.S. mathematical
sciences research; (2) assess trends and progress over the intervening
five years against the recommendations of the 1984 Report; (3) briefly
assess the field scientifically and identify significant opportunities for
research, including cross-disciplinary collaboration; and (4) make
appropriate recommendations designed to ensure that U.S. mathe-
matical sciences research will meet national needs in coming years.

While recognizing that many critical issues face the mathematical
sciencesespecially demographic and educational onesthis report
focuses on university research departments. These are the intellectual
wellsprings of the field and the source of many teachers who set the
pace for educational progress. By so focusing, this report comple-
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ments other recent and ongoing efforts within the mathematical sci-
ences community.'

Definition of the Mathematical Sciences

The discipline known as the mathematical sciences encompasses tore
(or pure) and applied mathematics, plus statistics and operations re-
search, and extends to highly mathematical areas of other fields such
as theoretical computer science. The theoretical branches of many
other fieldsfor instance, biology, ecology, engineering, economics
merge seamlessly with the mathematical sciences.

This intellectual definition does not correspond exactly to the admin-
istrative definitions under which data are collected. Most data in-
cluded in this report adhere to the NSF definition of mathematical
sciences, which is somewhat more restrictive than the intellectual
definition given above. By using these data, the committee sought to
maintain continuity with the 1984 Report, being confident that trends
and conclusions would not be skewed by such a small mismatch in the
basis. The research progress reports included in Appendix B were
deliberately chosen to span the broader definition of the field.

NOTES

'The Assembly of Mathematical and l'hysical Sciences at the NRC subsequently
evolved into the newly constituted Commission on Physical Sciences, Mathematics, and
Applications.

15 ee below, section headed "Definition of the Mathematical Sciences."
'The specific issue addressed in this part of the 1984 National Plan was not individ-

ual investigators versus group research. Rather it was grants that support only the
research time of principal investigators versus grants that do that and also support
graduate students, postdoctorals, and so on. In the early 1980s the average NSF re-
search grant in mathematics supported two months of summer research time for a
8-hincipal investigator and little else.

example, the National Research Council reports Everybody Counts: A Report to
the Nation on the Future of Mathematics Education (National Academy Press, Washington,
D.C., 1989) and A Challenge of Numbers: People in the Mathematical Sciences (National
Academy Press, Washington, D.C., 1990).
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2 Response to the 1984 National Plan

FEDERAL RESPONSE

The responses of science-intensive federal agencies to the recommen-
dations of the 1984 Report have been highly variable, ranging from
bold and sustained action in some cases to moral support with virtu-
ally no action in others. The two major agencies most directly in-
volved are the NSF, which accounts for 55% of the total federal sup-
port for the mathematical sciences and more than 90% of the support
for pure mathematics, and the DOD, which provides nearly 40% of the
total federal support for the mathematical sciences and 65% of the
support for applied mathematics and statistics.

Nearly two years before its 1984 Report was published, the Ad Hoc
Committee on Resources for the Mathematical Sciences had gathered
comprehensive data comparing federal support of mathematical sci-
ences research with support for related fields. These data were used
as part of the research briefing on mathematics given in October 1982
to George A. Keyworth, director of the Office of Science and Technol-
ogy Policy (OSTP), by a panel of the Committee on Science, Engineer-
ing, and Public Policy (COSEPUP) of the National Academy of Sci-
ences. The data had been developed under the aegis of the government's
Interagency Committee for Extramural Mathematics Programs
(ICEMAP) and were used extensively throughout the years 1982 to
1986 in staff presentations within several of the agencies, particularly
NSF. The early response to these data by OSTP and NSF was swift,
resulting in a 20% increase in the budget of NSF's Division of Mathe-
matical Sciences' from FY 1983 to FY 1984.
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Total federal agency academic support for the mathematical sciences
over the five years since the 1984 Report's appearance is profiled in
constant dollars in Table 2.1. (Some federal agencies also support
significant internal research in the mathematical sciences, which is not
included in Table 2.1.)

National Science Foundation

By the start of the 1980s, the Division of Mathematical Sciences at the
NSF had already begun an effort to better support the mathematical
sciences research infrastructure as well as research per se. A new
postdoctoral program was initiated after discussions in the National
Science Board, led by G. D. Mostow and others. Intensive debate over
proposed "research institutes" led eventually to the funding of the
Mathematical Sciences Research Institute (MSRI) at the University of
California-Berkeley and the Institute for Mathematics and its Applica-
tions (IMA) at the University of Minnesota, both now regarded as
highly successful. The debate also led to emphasis on "alternative
modes," which encompassed several other programs, notably an ex-
panded postdoctoral program.

Following the June 1984 publication of the National Plan in the 1984
Report, a strong NSF response was sustained. In November 1984, the
National Science Board, the governing body of the NSF, passed a
resolution calling on all federal science agencies to join with NSF in
remedying the marked imbalance in support that the report had pointed
out. Strong leadership by Erich Bloch, NSF director, his predecessor
Edward Knapp, and Richard Nicholson, associate director for the
Directorate for Mathematical and Physical Sciences, resulted in con-
tinued high priority for mathematics in the allocation of its funds. As
a result, NSF support of mathematical sciences research nearly doubled
(almost 50% real growth compared to 29% for total NSF R&D) over the
six years from FY 1983 to FY 1989. Equally important was the way
these funds were used. With strong backing from their advisory panels,
three successive directors of the Division of Mathematical Sciences, E.
F. Infante, John Polking, and Judith Sun ley, led an effort to restructure
the support patterns of NSF mathematics programs, balancing sup-
port for the research infrastructure (as represented by graduate stu-
dents, postdoctoral researchers, computing facilities, and so on) with
research support for principal investigators.

This ordering of priorities continues to be recommended by the NSF's
Mathematical Sciences Advisory Panel. Thus virtually all of the real
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TABLE 2.1 Federal Agency Academic Support for the Mathematical
Sciences, Constant 1984 Dollars (Millions)

Agency FY 1984 FY 1986 FY 1988 FY 1989

Percent
Increase,
FY 1984 to
FY 1989

Department of Defense
AFOSR 10.20 11.94 11.81 13.04 28
ARO 6.80 7.54 8.76 9.11 34

ONR 11.90 11.50 9.50 9.53 -20
DARPA - 4.94 9.91 7.13 N.A.
NSA - - 1.60 2.04 N.A.
Total DOD 28.90 35.92 41.58 40.85 41

Department of Energy 2.90 3.54 5.48 5.43 87

Other agencies' 2.00 1.80 0.83 0.79 -61
Total non-NSF 33.80 41.26 47.89 47.07 39

NSF
DMS 41.20 46.45 52.67 52.20 27
Other 4.00 4.94 4.54 6.34 59

Total NSF 45.20 51.39 57.21 58.54 30

TOTAL FEDERAL
ACADEMIC SUPPORT 79.00 92.65 105.10 105.61 34

'Estimate, including the National Aeronautics and Space Administration, the Na-
tional Institutes of Health, and the National Institute of Standards and Technology.
Also includes NSA prior to FY 1988.

Acronym key: AFOSR = Air Force Office of Scientific Research, ARO = Army
Research Office, ONR = Office of Navai Research, DARPA = Defense Advanced Re-
search Projects Agency, NSA = National Security Agency, NSF = National Science Foun-
dation, DMS = Division of Mathematical Sciences.

N.A. = Not appropriate.

SOURCE: FY 1990 Joint Policy Board for Mathematics submission to the American
Association for the Advanceiromt of Science (AAAS). Higher Education Price Index
used as dollar deflator.
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growth in the division's budget over the last six years has gene into
infrastructure support.

These priorities, consistent with the thrust of the 1984 National Plan,
have had a significant impact on the Ph.D. pipeline. An undesired
side effect is that, because of funding limitations, no progress has
been made on another important part of the plan: increasing the number
of principal investigators supported. It should also be noted that,
although the profile of grants in the Division of Mathematical Sciences
has changed for the better because of the consistent application of
these priorities, balance within the graints to the extent recommended
by the 1984 National Plan has not yet beer. attained. Thus future
priorities will need to emphasize both principal investigators and the
infrastructure for support.

Department of Defense

The percentage growth of total DOD support for the mathematical
sciences has been nearly the same it '3 that at NSF, 94% over the six-year
period from FY 1983 to FY 1989 (about 46% real growth compared to a
23% increase in the total DOD R&D budget). The form of the growth
has been quite different, however.

The three service agenciesthe Air Force Office of Scientific Research
(AFOSR), the Army Research Office (ARO), and the Office of Naval
Research (ONR)have been in a period of flat funding and have not
evolved comprehensive plans for strengthening their support of the
mathematical sciences. However, when the DOD's University Re-
search Initiative program was launched in 1986, high priority was
assigned to mathematics by the directors of the service agencies and
the civilian R&D management of DOD, notably Undersecretary Rich-
ard De Lauer and Deputy Undersecretary Ronald Kerber. Still, there
has been no net increase in funding except in support of computa-
tional facilities.

Support at DOD has grown principally because two new mathematical
sciences research programs were created, one at the Defense Advanced
Research Projects Agency (DARPA) and the other at the National
Security Agency (NSA).

The new DARPA program in Applied and Computational Mathemat-
ics, currently funded at the $9 million level (7% of total federal sup-
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port), was initiated by Craig Fields, now DARPA's director. It has
emphasized relatively large ($500,000 to $2 million) project grants to
groups of mathematicians working on broad problems in areas identi-
fied by DARPA staff as (1) important to the DOD and/or DARPA
mission; and (2) particularly promising scientifically. Originally, the
principal areas were dynamical systems, turbulent flow, computational
algorithms, data/image compression, and harmonic analysis/cluster-
ing algorithms. The contracts have greatly strengthened the research
efforts in those areas and have provided exciting models of problem-
focused grouP (or team) research. This program has generated in-
creased appreciation of the importance of mathematics to the DOD
mission well beyond the boundaries of DARPA. At the same time the
DARPA program has caused some concern within the mathematical
community for two reasons: (1) the program has tended to provide
more support for a few mathematicians who were already well sup-
ported, and therefore has done little to increase the number of people
supported in the field; and (2) initially the program has remained
independent of the broader mathematical community.

With 600 mathematicians on its staff, the NSA is one of the largest
employers of mathematicians in the country. Though still producing
large amounts of classified research, mathematicians at NSAbacked
by successive directors W.E. Odom and W.O. Studeman and Chief
Scientist Kermith Speiermanhave broadened their interaction with
the larger mathematical sciences community. The extramural Mathe-
matical Sciences Program at the NSA has had a positive impact on
federal support for the field far greater than its size ($2.5 million, or
2% of total federal support) might indicate. It has established a pro-
gram of "small science° research grants that support some 80 mathe-
maticians, most of whom work in areas traditionally labeled as pure
mathematics. Awards are made subject to a peer review system or-
ganized by the NRC's Board on Mathematical Sciences (BMS). The
program has helped to increase somewhat the number of principal
investigators supported in the field. The building of both formal and
informal bonds with the mathematical sciences community is also a
significant benefit.

Department of Energy

The Department of Energy (DOE) doubled its support for the mathe-
matical sciences over the period from FY 1984 to FY 1988, focusing
primarily on computational sciences and applied mathematics but also
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on geometry and mathematical physics. Its budget for supercom-
puting quadrupled over the same period. A postdoctoral fellowship
program begun in 1989 supports 14 computational mathematicians at
national laboratories; this program promises to strengthen ties be-
tween academic mathematicians and the DOE laboratories.

Mathematics of Computation Initiative

The 1984 Report's recommendation for a special mathematics of com-
putation initiativeresonating with the recommendations of earlier
reports, such as the "Lax Report"2was implemented to a large de-
gree. This initiative was meant to encourage mathematics graduate
students and new faculty to develop the new mathematics that will be
needed to effectively use the many supercomputers now in use or
planned. An NSF summary of federal funding for computational
mathematics research shows an increase from $4 million to $12 million
over the period from 1982 to 1987.3 In particular, the NSF created a
new program in computational mathematicswith FY 1987 expendi-
tures of nearly $3 millionto focus attention on this goal. The AFOSR
and DOE doubled their budgets in this area, while the ARO increased
its effort by 50%. DARPA's new program, which did not exist in 1982,
supported $1 million worth of computational mathematics in FY 1987.
In addition, the NSF supercomputing centers are major resources for
this endeavor. Clearly, a good infrastructure for support of this initia-
tive has been established.

Federal Progress Toward Achieving Quantitative Goals
of the 1984 National Plan

The goals for federal support set forth in the 1984 Report are the
quantitative elements of its National Plan for renewal. These esti-
mates of what it would take to restore balance between support for
mathematical sciences research and support for related fields were
derived from an analysis of the needs of the inner core of the research
enterprise in the mathematical sciences. This core was determined' to
consist of 2600 senior investigators3 and a renewal pipeline of 1000
graduate students, 200 postdoctorals, and 400 young investigators.
Section IV.B of Appendix A adds details to these goals. The annual
cost of support in 1989 was estimated to total $225 minion.'

Table 2.2 summarizes gains made in four key categories over the five
years since the 1984 Report was published. Several comments are in
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TABLE 2.2 Federal Support of Mathematical Sciences Research
Progress Over Five Years, 1984 to 1989

Category of Support

1984
National
Plan
Goal

1984
Level

Percent
Change,

1989 1984 to
Level 1989

Percent of 1984
National Plan
Coal Reached
by 1989

Number of researchers
supported

Senior investlgators 2600 1800 1900 +6 73

Postdoctoral researchers 400° 132 180 +42 47

Graduate research
assistants 1000 411 6616 +61 66

Total dollars (millions) 225' 99.6d 133 +34 59

le 1984 National Plan calls for awarding 200 two-year postdoctorals annually,
res icing in a population of 400 at any given time.

Nost recent counts comparable to the 1984 numbers, from fall 1988. (NSF Division
of Science Resources Studies, personal communication.)

1984 National Plan goal adjusted for inflation using Higher Education Price!.
revised National Plan goal is $250 million.

dln 1989 dollars, using Higher Education Price Index.

order about increases in total support for the field. In actual dollars,
total federal support has climbed from $79 million in 1984 to $133
million in 1989, an increase of 68% over the five years. As described
above, support by the two major funders, NSF and DOD, increased by
roughly the same percentage but through different mechanismsat
NSF through consistent increases in the budget of its Division of
Mathematical Sciences and at DOD principally through the creation of
two new programs, one at DARPA and the other at NSA.

As Table 2.2 shows, the actual dollar increase of 68% translates into
real growth of about 34%, most of which has gone into support for
graduate students and postdoctorals,7 in accordance with priorities
set in 1984. Nevertheless, we are still far from the goals of annually
funding 2600 senior investigators, 200 new postdoctoral researchers,
1000 graduate research assistants, and 400 young investigators. Fur-
thermore, the balance called for in the 1984 National Plan between
support for senior investigators, on the one hand, and emerging schol-
ars, on the other, has not yet been achieved.
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Actual dollar increases of 68% in five years (95% over the six years
from 1983 to 1989) represent bona fide gains for the mathematical
sciences (34% and 46%, respectively, in real dollars). This occurred in
a period when funding for the sciences was less than robust. How-
ever, apparently significant incremental increases can be misleading
when the base level is very small. Table 2.2 shows vividly that there is
still a long way to go. For example, total support for the field in 1984
stood at 44% of the goal recommended in the 1984 Report, and in 1989
it stood at 59% of that goal, after adjusting for inflation.

Table 2.3 updates Figure 1.2 and Table 1.1 and covers a longer period
than does Table 2.2. These counts omit summer postdoctoral posi-
tions and other grants that do not reflect the spirit of the 1984 Na-
tional Plan's recommendations. The absolute numbers of federally
supported graduate research assistants and postdoctorals in the ma the-

TABLE 2.3 Selected Ph.D. Pipeline Comparisons for 1980 and 1988

Point of Comparison Chemistry Physics
Mathematical
Sciences

Graduate research assistants
federally supported

1980 3733 2976 421
1988 4673* 35916 661

Annual Ph.D. production
1980 1538 862 744
1988 2018 1172 749

Postdoctoral researchers
federally supported

1980 2255 1210 57
1988 2587 1280 188

Ratio of federally
supported graduate
research assistants
to Ph.D. degrees
produced (1988) 2.32 3.06 0.88

Ratio of federally
supported postdoctoral
researchers to Ph.D. degrees
produced (1988) 1.28 1.09 0.25

1986 figures; later data not yet available.

SOURCE: National Science Foundation, Division of Science Resources Studies.
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TABLE 2.4 Type of Support for Full-Time Graduate Students in
Doctorate-Graating Institutions, 1987

Number Number Number Fraction
of with with with
Graduate Teaching Research Research
Students Assistantships Support* Support

Biological sciences 37,734 8,210 22,114 0.586
Physics 11,17175 4,089 5,660 0.511
Chemistry 15,664 7,005 7,630 0.487
Engineering 61,194 11,005 27,550 0,450
Social sciences 48,699 9,745 13,6A4 0.280
Computer sciences 13,578 3,258 3,612 0266
Mathematical sciences 12,354 7,089 2,231 0381

'includes research assistantships, fellowships, and traineeships.

SOURCE: National Science Foundation, Division of Science Resources Studies
(personal communication).

matical sciences shown in Table 2.3 remain only small fractions of the
figures for comparable groups in chemistry and physics. The ratios
presented in Table 2.3 more pointedly illustrate how the supported
research time during the training years falls short in the mathematical
sciences. Table 2.4 shows that in 1987 only 18% of full-time mathe-
matical sciences graduate students received research-related support,
compared to the 45 to 50% of graduate students in the physical sci-
ences and engineering who had such support. Clearly, researchers in
training in the mathematical sciences still have a difficult time gaining
the depth and breadth of experience common among researchers in
other sciences.

The number of federally supported individual investigators in mathe-
matics, estimated as under 1800 in 1984,° stood at about 1900 in 1989
(Table 2.5). The 1984 Report discussed at some length (pp. 61-64) its
conservative estimates that there are at least 2600 highly productive
researchers in the mathematical sciences and that the field needs a
cadre of about 2600 fully active, federally funded researchers in order
to be balanced with other fields that use mathematics. Supporting an
additional 700 investigators not only would increase their individual
productivity, but would also encourage a larger fraction of mathema-
ticians to stay highly productive, thereby increasing the field's overall
productivity.
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TABLE 2.5 Number of Mathematical Sciences Research
Investigators Supported by Federal Grants and Contracts
in FY 1958

Agency Research Investigators Supported

Department of Energy 91'
Department of Defense

ONR 223

NSA 41

ARO 213

DARPA 112

AFOSR 342

Total non-NSF research 1022"

National Science Foundation
Total NSF research 3364'

Total federal agency count 2386

Less duplicates -4sod

TOTAL INDIVIDUAL
INVESTIGATORS SUPPORTED 1906

'Since the field's renewal efforts most critically depend on university
departments, 94 DOE laboratory investigators are omitted from this number.

bAlI non-NSF investigator counts listed are 95% of agency figures
because those agencies advise that at least 5% of their grants are non-
research.

"The NSF Division of Mathematical Sciences also supports 56 investiga-
tors for non-research activities such as conferences and other special
projects, who are omitted front the total shown.

dBased on discussions with cognizant federal program officers, this
committee conservatively estimates that at least 480 investigators appear on
more than one federal grant.

Acronym key: AFOSR = Air Force Office of Scientific Research, ARO =
Army Research Office, ONR = Office of Naval Research, DARPA = Defense
Advanced Research Projects Agency, NSA = National Security Agency, NSF =
National Science Foundation.

SOURCE: Program officers' counts, personal communicatien.
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The infrastructure of the mathematical sciences is composed primarily
of pevple, with funded investigators constituting the supporting struc-
ture for the field. Federal support for this core is the major infrastruc-
ture requirenient of the discipline. However, other elementsgradu-
ate research assistants, postdoctoral researchers, funds for travel, and
support for collaborative researchare becoming increasingly impor-
tant now as the field unifies internally and expands externally, be-
cause those trends require greater breadth on the part of researchers.
Funding for computer time and for hardware fixed costs is a rapidly
growing requirement. The evolving needs of the infrastructure are
addressed by the second thrrst of the 1984 National Plan as summa-
rized in Chapter 1.

Apropos of balance with other fields of science, the fraction of scien-
tists engaged in R&D in educational institutions who receive federal
support remains significantly lower in the maihematical sciences than
in chemistry or physics and astronomy. According to the 1987 NRC
survey of doctoral recipients,9 37% of the mathematical scientists in
educational institutions who identified R&D as their primary or sec-
ondary activity had federal support. Comparable figures for chemists
and for physicists and astronomers were 56% and 75%, respectively.

RESPONSE OF THE UNWERSITIES

Few, if any, universities responded to the recommendations in the
1984 Report by conducting comprehensive reviews of the circumstances
of their mathematics departments and formulating plans for improv-
ing those circumstances as part of strengthening the health of the
discipline. It is difficult to say whether this was due to a lack of
strong initiative by individual departments, to inertia of university
administrations, or both. It is safe to say, however, that the general
pattern of reaction does not seem to reflect awareness of the serious
problems that must be overcome to achieve the renewal of the U.S.
mathematical sciences enterprise.

Univer: ity administrations were also urged in the 1984 Report to act
as proponents of mathematical sciences research, interceding with
government agencies and seeking new government and industry ini-
tiatives that could benefit their mathematical sciences departments.
Again, very few universities appear to have responded.
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The universities that did respond were principally those where deans,
provosts, and presidents were made aware of the key issues by their
mathematical sciences department chairs, often acting in tandem with
a federal agency or with professional society representatives This
committee's canvassing of departments indicated that such a response

not the norm, however. Actions taken by university administra-
tions have included support for departmental computer hardware,
some start-up grants for new hires, and increased salary offers to
allow the departments to compete for top-quality faculty. These
measures have alleviated some of the strains on these departments.

University associations have taken no action in response to the recom-
mendations in the 1984 Report. The report, with its stark descriptions
of the circumstances of mathematics departments, was brought to the
attention of leaders in university associations but did not find its way
onto their active agendas.

RESPONSE OF THE MATHEMATICAL
SCIENCES COMMUNITY

The group that has done the most and yet still has the most to do is the
U.S. mathematical sciences community. It is useful to look at its
response to the 1984 Report at two levels, the response of its leader-
ship and the response of individual members nf the cnntmunity.

Response of Leadership

The mathematics community is engaged in a multistage, multiyear
critical examination of its roles in research, education, and public
policy. This ambitious undertaking, which will take several major
steps forward in 1990, began in 1980 when leading mathematicians
became alarmed over markedly decreased flows of ta.ent and resources
into their field, and into science and technology more broadly. They
stimulated the development of a postdoctoral program and two new
research institutes supported by NSF funding. They mobilized the
professional societies in mathematics and enlisted the aid of the NRC
in analyzing the forces undermining the infrastructures of mathemat-
ics research and education, for the purpose of developing national
plans to reverse the trends of declining Ph.D. production, erosion of
federal support, deterioration within mathematics departments, in-
creasing student and public apathy toward mathematics, and growing
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complacency within the field itE about some of its responsibilities.
The focus for the analyses was not the past, however; it was the
opportunities that mathematics provides for the future well-being of
science and technology, the nation, and its individual citizens.

The comprehensive assessment that these actions set in motion will
continue throughout the 1990s and is generating in successive steps
the plans and organizational mechanisms needed at the national level
to renew and continuously maintain the vitality of this country's broader
mathematical sciences enterprise. In 1990 the mathematical sciences
community will have before it for widespread discussion organiza-
tional plans for its many future rolesin research, in precollege edu-
cation, in college and university education, and in relating its work to
various other communities. These discnscie;-Is will be important ele-
ments of what is being called within the community the Year of Na-
tional Dialogue.

Highlights of the major steps taken by the mathematical sciences
community since 1980 to bring the dialogue to its present stage are as
follows:

1980 New postdoctoral fellowship programThe NSF launches its
Mathematical Sciences Postdoctoral Research Fellowships pro-
gram to increase postdoctoral opportunities in mathematics.

1981 Research institutesThe Mathematical Sciences Research Insti-
tute at the University of California-Berkeley and the Institute
for Mathematics and Its Applications at the University of Min-
nesota are created with NSF backing, further expanding the
NSF's emphasis on the infrastructure for mathematical research.

1981 The David CommitteeThe NRC, the principal operating agency
of the National Academy of Sciences (NAS) and the National
Academy of Engineering, establishes a prestigious committee
of scientists and engineers, chaired by Edward E. David, Jr., to
review the health and support of research in the mathenidtical
sciences in the United States.

1982 The Browder briefing panelAt the request of the White House,
the NAS's Committee on Science, Engineering, and Public Pol-
icy (COSEPUP) establishes panels to brief the Science Advisor
to the President on research opportunities in six fields. First to
report is the Mathematics Panel, chaired by William Browder,
which points out that mathematics is flourishing intellectually
but that its research infrastructure is eroding rapidly.
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1983 The Joint Policy Board for MathematicsThe American Mathe-
matical Society (AMS), the Mathematical Association of Amer-
ica (MAA), and the Society for Industrial and Applied Mathe-
matics (SIAM) create a nine-member joint executive action arm,
the Joint Policy Board for Mathematics (JPBM), to begin imple-
menting the recommendations of the David Committee. The
JPBM emphasizes unity across the discipline, one of the five
basic recommendations to the mathematics community later
made by the David Committee.

1984 Renewing U.S. Mathematics: Critical Resource for the FutureThe
1984 "David Report" highlights the flowering of mathematics
and its uses since World War II and calls attention to serious
signs of trouble: (1) the impending shortage of U.S. mathema-
ticians and (2) a marked imbalance between federal support of
mathematics research and support for related fields of science
and engineering. Based on a careful analysis, it calls for more
than a doubling of the FY 1984 federal support level and lays
out a ten-year implementation plan, with specific roles for
government, universities, and the mathematical sciences com-
munity.

1984 The Board on Mathematical SciencesIn December 1984 the NRC
establishes the Board on Mathematical Sciences (BMS) to pro-
vide a focus of active concern at the NRC for issues affecting
the mathematical ciences, to provide objective advice to fed-
eral agencies, and to identify promising areas of mathematics
research along with suggested mechanisms for pursuing them.
The BMS has become an important mechanism for drawing to-
gether representatives of all the mathematical sciences.

1985 The Mathematical Sciences Education BoardAt the urging of the
mathematical sciences community, the NRC establishes in
October 1985 the Mathematical Sciences Education Board (MSEB)
to provide "a continuing national assessment capability for
mathematics education" from kindergarten through college. A
34-member board is appointed that is a unique working coali-
tion of classroom teachers, college and university mathemati-
cians, mathematics supervisors and administrators, members
of school boards and parent organizations, and representatives
of business and industry. This step reflects another of the
basic recommendations of the David Committee: strong in-
volvement of all sectors of the mathematics community in is-
sues of precollege education.
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1985 Board on Mathematical Sciences' department chairs' colloquium
An annual series of colloquia for chairs of mathematical sci-
ences departments, begun by the Science Policy Committee of
the AMS, is taken over and extended by the BMS. These suc-
cessful meetings enable department chairs to pool their ideas
and experience, focusing the ensemble into a valuable action
group for addressing problems common to many mathematical
sciences departments.

1986 The Joint Policy Board on Mathematics, Washington, D.C., office
The JPBM's Washington, D.C., activities come to embrace
enhanced congressional contact and a vigorous public infor-
mation effort. An office of governmental and public affairs is
opened and it helps launch National Mathematics Awareness
Week, which is to become an annual April event. Contact with
the media and resultant coverage of mathematics are increased,
thus starting the long-term coordinated effort, recommended
by the David Committee, to increase public information and
understanding.

1986 Board on Mathematical Sciences' Science and Technology Week Sym-
posiurnThis symposium, which is held annually at the NAS's
Washington, D.C., facility, highlights the role of research mathe-
matics in the sciences and engineering for an audience of scien-
tists and policymakers.

1987 Department of Defense advisory panelsThe BIAS advisory panel
to the AFOSR releases a report assessing the AFOSR mathe-
matical sciences program. The BMS Panel on Applied Mathe-
matics Research Alternatives for the Navy (PAMRAN) pro-
duces a report for ONR on selected research opportunities
relative to the Navy's mission." The BMS advisory panel to
the Mathematical Sciences Program of the NSA is formed.

1987 Project MS 2000At the urging of JPI3M, and under the super-
vision of the BMS and MSEB, the NRC launches a comprehen-
sive review of the college and university mathematics enter-
prise through the Mathematical Sciences in the Year 2000 (MS
2000) project. This is analogous to the David Committee's
review of the health and support of mathematics research na-
tionally.

1988 700 Years of American MathematicsThe occasion of the centen-
nial of the AMS is used to develop a year-long series of related
events promoting discussion withit the mathematical sciences
community of major issues it faces in research and education.
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1988 Office of Scientific and Public AffairsThe American Statistical
Association's (ASA) public information office is established to
provide an interface between statisticians, the public, and the
federal government.

1989 Challenges for the '90s11The ASA report outlining significant
application areas and societal problems for statisticians to
explore in the 1990s is released.

1989 Everybody CountsI2The first BMS-MSEB-MS 2000 "report to
the nation" on the state of mathematics education in the United
States, kindergarten through college, based on the MSEB's
precollege work and on preliminary work of the MS 2000 proj-
ect. It emphasizes the potential of a modified mathematics
education for contributing to the national welfare and outlines
a national strategy for bringing about needed change in the
1990s.

1990 Renewing U.S. Mathematics: A Plan for the 19908This report,
which is a five-year update of the 1984 Report. It describes
emerging research opportunities and new challenges for gov-
ernment, universities, and the mathematical sciences commu-
nity to continue the program to renew U.S. mathematics.

1990 Second report to the nationThe final report of the MS 2000
project, to appear near the end of 1990, will lay out a national
plan for revitalizing mathematics education in U.S. colleges
and universities.

Response of Individuals in the Research Community

The many mathematicians and statisticians who have peopled the
advisory committees to federal agencies over the last six years have,
by and large, exhibited the same bold imagination and concern with
critical examination of their field that are reflected in the decade of
initiatives just listed. They have continued to emphasize most strongly
the support of graduate student and postdoctoral researchers. This
strategy may be working: Ph.D. production appears to be turning
upward after many years of decline.

Not surprisingly, the beneficial effects of the strategy to improve the
research infrastructure are not experienced by many mathematicians.
What is seen in university mathematical sciences departments is that
the percentage of high-quality mathematicians with federal support is
lower than the corresponding percentage in other fields of science and
ihat the number of principal investigators supported has remained
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inadequate over the last six years. Hardly surprising, therefore, is the
bona fide concern over the strategy to be followed in the next five or
six years. This concern is most prevalent among investigators doing
research in pure mathematics, the group for which the largest gap
exists between the number of highly qualified researchers and the
number with federal support.

NOTES

'What is now the Division of Mathematical Sciences at the NSF grew out of the
former Division of Mathematical and Computer Scienees, which was divided in 1983.

'Report of the Panel on Large-Scale Completing in Science and Engineering, P. D Lax,
chair (National Science Foundation, Washington, D.C., 1982).

'NSF Division of Mathematical Sciences, personal communication. Amounts quoted
are in actual dollars and have not been adjusted for inflation.

°Renewing U.S. Matkematfits: Critical Room for the Future, National Research Council
(National Academy Press, Washington, D.C., 1984), pp. 57-65.

"There are some 10,000 mathematicians and statisticians in the mathematical 9d-
ences research community, of whom one-half are productive and about one-quarter
highly productive, according to criteria spelled out in the 1984 Report.

'This figure results from updating the 1984 estimated budget of $180 million with
the Higher Education Price Index published in Statistical Abstract of the U.S., 1990,
Bureau of the Census, U.S. Dept. of Commerce, Washington, D.0

'Support has also been given to the mathematics of computation initiative, which is
not itemized in Table 2.1. The number of postdoctorals in 1984 was already double the
counts given in the 1984 Report (dating from 1980 and 1981) because of initiatives begun
concurrent with that report's preparation.

Menewins U.S. Mathematics: Critical Resource fvr the Future, 1984, p. 95.
'Survey of Doctorate Recipients project, National Research Council (personal com-

munication).
°A second PAMRAN opportunities report is scheduled for release in 1990.
'1Chalienges for the '90s (American Statistical Association, Washington, D.C., 1989).
"Everybody Counts: A Report to the Nation on the Future of Mathematics Education,

National Research Council (National Academy Press, Washington, D.C., 1989).
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3 Research Progress and Prospects

A survey of modern science and technology shows the mathematical
sciences supporting crucial advances and giving rise to a wealth o:
creative and productive ideas. The mathematical achievements of this
century, among the most profound in the history of the discipline,
have been fundamental to the development of our technological age.
And beyond their practical applications, the development of these
mathematical sciences can be counted among the great intellectual
achievements of humankind.

The mathematical sciences constitute a discipline that combines rigor,
logic, and precision with creativity and imagination. The field has
been described as the science of patterns. Its purpose is to reveal the
structures and symmetries observed both '-t nature and in the abstract
world of mathematics itself. Whether motivated by the practical prob-
lem of blood flow in the heart or by the abstraction of aspects of
number theory, the mathematical scientist seeks patterns in order to
describe them, relate them, and extrapolate from them. In part, the
quest of mathematics is a quest for simplicity, for distilling patterns to
their essence.

Of course, the nonmathematician who tries to read a mathematics
research paper is bound to see the terms as anything but simple. The
field has developed a highly technical language peculiar to its own
needs. Nonetheless, the language of mathematics has turned out to be
eminently suited to asking and answering scientific questions.

Research in the mathematical sciences is directed toward one of two
objectives, and in some cakes toward both: (1) to build on and expand
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the core areas of the discipline and (2) to solve problems or create
problem-solution techniques for the increasingly numerous areas of
science and technology where mathematics finds applications. Thus
mathematical sciences research spans a spectrum from the examina-
tion of fundamentals to the application-driven solution of particular
problems. This chapter surveys selected recent research achievements
across this spectrum and mentions a sampling of current research
opportunities that build on and promise to extend recent progress.

These opportunities for progress are real and exist in every major
branch of the mathematical sciences. What is unusual about the mathe-
matical sciences at this time is that, collectively, they are poised to
make striking contributions across the whole spectrum of science and
engineering.

THE MATHEMATICAL SCIENCES YESTERDAY

This potential for progress is the result of the remarkable growth of
the mathematical sciences along three more or less parallel paths,
stemming from a branching point in the 1930s, when mathematics as a
"pure" discipline entered a new era characterized by reexamination of
its foundations and exploitation of powerful new tools of abstraction.
The result was an extronrdinary flourishing of the discipline and an
acceleration of the de..elopment of its major branches through the
post-World War II years. The pace was so rapid that specialization
increased, and for a while it seemed that topologists, algebraic geome-
ters, analysts, and other groups of mathematical scientists could barely
speak to one another. Each was inventing powerful new mathematical
structures to unify previously disparate fdeas and shed new light on
classical problems.

These developments were accompanied by independent spectacular
advances in applied mathematics and statistics during the same pe-
riod. A major stimulus for these efforts was World War II, which
presented an array of sc:entific and technological challenges. In
communication, control, management, design, and experimentation,
the power of mathematical concepts and methods was felt in the post-
war years as never before.

A third line of inquiry rooted in the 1930s resulted in the evolution of
the computer. The original work of a handful of mathematicians and
electrical engineers some 50 years ago gave rise to a new discipline
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computer scienceand a new tool, more powerful than any in history,
for storing, processing, and analyzing information. Few people Wday
need to be told of the impact computers are having on society. But
many people need to have it pointed out that the computer is very
much a mathematical tool that extends the reach and power of mathe-
matics. The computer has already had an enormous impact on ap-
plied mathematics and statistics, and more generally on science and
engineering (see section below, "Computers in the Mathematical Sci-
ences").

THE MATHEMATICAL SCIENCES TODAY

In more recent years several dramatic changes have begun to occur
within the discipline. Ever more general and more powerful methods
and structures developed within pure mathematics have begun to
reunify its various branches. The gap between pure and applied mathe-
matics has also begun to close as more of the new methods are used in
other fieldsfor example, in biology, medicine, and finance, as well
as in fields usually thought of as mathematical. And the computer
continues to stimulate the need for new mathematics while opening
unprecedented new directions and methods for mathematical explora-
tion per se. The immensity and richness of the methods and ideas
developed by pure and applied mathematicians and statisticians over
the last 50 years constitute a huge resource being tapped by the intel-
lectual machine of science and engineering.

It is this image of the mathematical sciences today that one should
have in mind while reading this brief survey of the state of the field as
a whole. This is an unusual time in the history of the discipline. The
simultaneous internal unification and greater awareness of external
applications have brought the mathematical sciences into an era of
potentially greater impact on the world around us.

This chapter is a companion to kppendix B, which contains more-
detailed, brief descriptions of 27 important research areas that have
produced significant accomplishments in recent years and that offer
opportunities for further research. The committee emphasizes that
the achievements and opportunities discussed in Appendix B are not
intended to be comprehensive,' nor are they intended to suggest a
specific agenda for funding research in the mathematical sciences.
The aim is rather to demonstrate by example the vigor and compre-
hensiveness of current mathematical sciences research, and how the
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mathematical sciences are reaching out increasingly into all parts of
science and technology even as the core areas of the mathematical
sciences are expanding significantly. The selection of topics discussed
in Appendix B illustrates the very real progress made across that
spectrum in just the last five years.

Tlw many applications of mathematicswhich are most readily vis-
ible to the larger scientific communitycan be realized only if the
discipline as a whole remains strong and vibrant internally. Mathe-
matics has indeed been interacting with other disciplines in healthy
and productive new ways while simultaneously receiving an infusion
of new ideas.2 This process is accelerating, and the accounts in Ap-
pendix B illustrate the extent and import of cross-disciplinary research
today. There is now an ever-increasing interest in applied problems
an interest that was perhaps not so evident a decade or two ago. At
the same time mathematics has developed a substantially greater sense
of internal unity and has displayed healthy cross-fertilization of ideas
between subdisciplines. The intellectual energy produced by these
two trendslooking externally for new problems and unifying inter-
nallyrepresents perhaps the greatest opportunity of all for the mathe-
matical sciences over the next five years.

COMPUTERS IN THE MATHEMATICAL SCIENCES

From the convenience of a hand calculator, to the versatility of a
personal computer, to the power of parallel processors, computers
have ushered in the technological age. But they have also ushered in
a mathematical age, since computers provide one of the main routes
by which mathematics reaches into every realm of science and engi-
neering. Computers have profoundly influenced the mathematical
sciences themselves, not only in facilitating mathematical research,
but also in unearthing challenging new mathematical questions. Many
of the research advances described in this chapter and in Appendix B
would not have been possible without computers and the associated
mathematics that is concurrently being developed.

It is sometimes thought that once computers are powerful enough,
mathematicians will no longer be needed to solve the mathematical
problcins arising in science and engineering. In fact, nothing could be
farther from the truth. As computers become increasingly powerful,
mathernmicians are needed more than ever to shape scientific prob-
lems into mathematical ones to which computing power can be ap-
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plied. And as science and engineering attempt to solve ever more
ambitious problemsinvolving increasingly large and detailed data
sets and more complicated structuresentirely new mathematical ideas
will be needed to organize, synthesize, and interpret.

Computers are fundamentally connected to mathematics, in their
physical design, in the way they organize and process information,
and it their very history. The concept of a machine that could per-
form calculations automatically dates at least to the early nineteenth
century. This concept became practical through the farsightedness of
such mathematicians as Alan Turing, famous for cracking the German
Enigma code during World War 11, and John von Neumann, who was
the driving force behind the design and building of the first computer.

Computer scientists continue to draw on theoretical mathematics, since
advances in computing power are dependent upon mathematical ideas.
Faster electronic components are continually appearing, but advances
in hardware alone will not improve computing speed and efficiency,
and most experts agree that the development of efficient software is
not keeping pace with hardware development. Designing and analyz-
ing the efficiency of computer algorithms are largely mathematical
tasks. Af machines become faster and computer memory sizes be-
come larger, asymptotic improvements in the efficiency of algorithms
become more and more important in practice. Recent research in
theoretical computer science has produced significant improvements
in specific algorithms and also new approaches to algorithm design,
such as the use of parallelism and randomization.

The impact of the computer on the mathematical sciences has particu-
larly broadened the domain of the mathematical modeler, who can
now reliably simulate quite complex physical phenomena by com-
puter. Widely used in all sciences and in engineering, and a research
area in its own right, computer modeling plays a major role in the
development of critical technologies such as the fabrication of micro-
electronic circuits and the understanding of fluid flow. Developing
appropriate simulations for a given technology invariably involves a
high degree of scientific knowledge as well as sophisticated mathe-
matical tools to describe and evaluate the model. Validation of these
models may require statistical tests and comparison with an andyti-
catty prod aced limiting-case solution. Ultimately the model itself has
to be tuned to physical data to confirm or improve its aptness for
representing a physical process or phenomenon.
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Finally, and by no means least important, the computer is beginning
to have a significant impact on areas of core mathematics through its
use in the visualization of underlying mathematical structures. Its use
in proving theorems is evidenced 5y thn recent proofs of the four-
color theorem and of the Feigenbaum conjecture.

ACCOMPLISHMENTS AND OPPORTUNITIES

The committee has selected for presentation a collection of specific
recent research achievements (Appendix B) that open up new oppor-
tunities for the future. It is emphasized that this is a partial list only
add that lack of space precludes a fuller and more comprehensive
survey. These examples of research progress and opportunities are as
follows:

I. Recent Advances in Partial Differential Equations
2. Vortices in Fluid Flow
3. Aircraft Design
4. Physiology
5. Medical Scanning Techniques
6. Global Change

Chaotic Dynamics
8. Wavelet Analysis
9. Number Theory

10. Topology
1I. Symplectic Geometry
12. Noncommutative Geometry
13. Computer Visualizaticn as a Mathematical Tool
14. Lie Algebras and Phase Transitions
15. String Theory
16. Interacting Particle Systems
17. Spatial Statistics
18. Statistical Methods for Quality and Productivity
19. Graph Minors
20. Mathematical Economics
21. Parallel Algorithms and Architectures
22. Randomized Algorithms
23. The Fast Multipole Algorithm
24. Interior Point Methods for Linear Programming
25. Stochastic Linear Programming
26. Applications of Statistics to DNA Structure
27. Biostatistics and Epidemiology
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A description in some detail of the specifics of each c4 these is given in
Appendix B. What follows here is a discussion of how these achieve-
ments and opportunities (referred to by the Appencix B section num-
ber that also corresponds to the numbers in the listing of topics above),
as well as some others not included in Appendix B, Et into the overall
landscape of the mathematical sciences and their many and varied
applications. It is hoped that this brief nar- z will convey an appre-
ciation of the breadth, scope, and tisefu gess of the mathematical sci-
ences and how they are changing the contours of science and technol-
ogy. At the same time it is hoped that this discussion will illustrate
the vitality of mathematics as a discipline and show not only how
ideas flow from the core of mathematics out to applications but also
how the applications of mathematics can, in turn, result in ideas flow-
ing to the core areas of the discipline. These interchanges affect al-
most every area of core mathematics.

For instance, developments in such core areas as number theory, alge-
bra, geometry, harmonic analysis, dynamical systems, differential
equations, and graph theory (see, for instance, Sections 1, 7, 8, 9, 10,
II, 12, and 19 in Appendix B) not only have significant applications
but also are themselves influenced by developments outside of core
mathematics.

The Living World

The mathematical and the life sciences have a long history of interac-
tion, but in recent years the character of that interaction has seen some
fundamental changes. Development of new mathematics, greater
sophistication of numerical and statistical techniques, the advent of
computers, and the greater precision and power of new instrumenta-
tion technologies have contributed to an explosion of new applica-
tions. Testifying to the impact of mathematics, computers are now
standard equipment in biological and medical lath ies. Several
recent fundamental advances seem to indicate a revolution in the way
these areas interact.

The complexity of biological organisms and systems may be unrav-
eled through the unique capability of mathematics to discern patterns
and organize information. In addition, rendering problems into mathe-
matical language compels scientists to make their assumptions and
interpretations more precise. Conversely, biologists can provide a wealth
of challenging mathematical problems that may even suggest new
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directions for purely mathematical research. Great differences in ter-
minology and in the cultures of the two fields require a c- of re-
searchers with understanding of both areas.

Mathematical techniques for understanding fluid dynamics have made
possible computational models of the kidney, pancreas, ear, and many
other organs (Section 4). In particular, computer models of the human
heart have led to imrroved design of artificial heart valves. Mathe-
matical methods were fundamental to the development of medical
imaging techniques, including CAT scans, magnetic resonance imag-
ing, and emission tomography (Section 5). In the neurosciences the
mathematical simulation of brain functions, especially through com-
puter modeling, has come close enough to reality to be a powerful
guide to experimentation. For instance, mathematical models have
recently helped to elucidate studies in the formation of ocular domi-
nance columns, patches of nerve cells in the visual cortex that respond
to signals from only one eye. In addition, advances in neural network
simulations are starting to have a significant impact on predicting
how groups of neurons behave.

Recently DNA researchers have collaborated with mathematicians to
produce some striking insights. When a new experimental technique
allowed biologists to view the form of DNA under an electron micro-
scope, researchers saw that DNA appeared tangled and knotted.
Understanding the mechanism by which DNA unknots and replicates
itself has led to the application of knot theory (a branch of mathemat-
ics that seeks to classify different kinds of knots) to DNA structure.
At about the same time a breakthrough in knot theory gave biologists
a tool for classifying the knots observed in DNA structure (see Section
10 for details). In addition, researchers are developing three-dimen-
sional mathematical models of DNA and arc applying probability theory
ard combinatorics to the understanding of DNA sequencing (Section
26).

Computers have brought sophisticated mathematical techniquLs to
bear on complicated problems in epidemiology. One major effort is
the mathematical modeling of the AIDS epidemic. Analysis of data on
transmission of the human-immunodeficiency virus that causes AIDS
has shown that HIV does not spread like the agents of most other
epidemics. Various mathematical methods have been combined with
statistical techniques to produce a computer model that attempts to
account for the range of factors influencing the spread of the virus.
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However, because of the complexity and size of the problem, research-
ers are finding current computational power inadequate and are look-
ing for mathematical ways of simplifying the problem (Section 27).

The Physical World

The physical sciences, especially physics itself, have historically pro-
vided a rich source of inspiration for the development of new mathe-
matics. The 'history of science has many examples of physical scien-
tists hunting for a theoretical framework for their ideas, only to find
that mathematical scientists had already created it, quite in isolation
from any application. For example, Einstein used the mathematical
theory of differential geometry, and, more recently, algebraic geome-
try has been applied to gauge field theories of physics.

Often the mathematical equations of physics cannot be solved pre-
cisely, and so their solutions must be approximated by the methods of
numerical analysis and then solved by computer. Other problems are
so large that only a sample of their solution can be found, with statis-
tical techniques putting this sample in context. For this reason, the
computer has become an indispensable tool for a great many physical
scientists. The computer can act as a microscope and a telescope,
allowing researchers to model and investigate phenomena ranging
from the dynamics of large molecules to gravitational interactions in
space.

The equations of fluid dynamics fit into the broader class of partial
differential equations, which have historically formed the main tie
between mathematics and physics. Global climate change is a topic of
intense debate, and greater quantitative undeistandingthrough the
use of mathematical modeling and spatial statistics techniqueswould
greatly help in assessing the dangers and making reliable predictions
(see Sections 6 and 17). One of the striking characteristics of today's
applications is the range of mathematical subjects and techniques that
are found to have connections to physical phenomena, from the appli-
cation of symplectic transformations to plasma physics (see Section
11) to the use cf topological invariants in quantum mechanics (see
Section 12). As the various subfields of the mathematical sciences
themselves become increasingly interconnected, new and unexpected
threads tying them to the physical sciences are likely to surface. Over
the past decade the highly theoretical area of Lie algebras has illumi-
nated the physical theory of phase transitions in two dimensions,
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which has applications to the behavior of thin films (see Section 14).
The study of chaotic dynamics, which employs a range of mathemati-
cal tools, has demonstrated that unpredictable behavior can arise from
even the simplest deterministic systems and has been used to describe
diverse phenomena, such as the interfaces between fluids (see Section
7). Investigation of quasicrystals, a category of matter combining
properties of crystals and glasses, utilizes the mathematical theory of
tiling, which describes ways of fitting geometrical figures together to
cover space.

Other areas of science and engineering have benefited from the close
connections between the mathematical and physical sciences. Because
of the increased power of instrumentation technology, many phenom-
ena can be observed with a precision that allows questions to be
formulated in terms of mathematical physics. In fact, computational
methods in fluid dynamics have made it possible to model a host of
phenomena in chemistry, astrophysics, polymer physics, materials
science, meteorology, and other areas (see Sections 1, 2, 3, 4, 6, and
23). The degree of precision achieved by these models usually is
limited partly by the modeling and physical understanding, and partly
by the available computing power. Improvements to the mathemati-
cal model or algorithm can often significantly increase the actual
computing power achievable with given hardware, and hence the degree
of model accuracy.

Theoretical physics has often posed profound challenges to mathemat-
ics and has suggested new directions for purely mathematical research.
One spectacular instance of cross-fertilization came with the advent of
string theory. This theory proposes the intriguing idea that matter is
not made up of particles but rather is composed of extended strings.
Algebraic geometry, a highly abstract area of mathematics previously
thought to have little connection to the physical world, is one of the
ingredients providing a theoretical framework for string theory. In
addition, string theory is supplying mathematicians with a host of
new directions for research in years to come. Section 15 in Appendix
B provides details.

The Computational World

Much of the research on algorithms is highly mathematical and draws
on a broad rangeofithe mathematical sciences, such as combinatortcs,
complexity theory, graph theory, and probability theory, all of which
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are discussed in Appendix B. A striking and recent algorithmic ad-
vance is the development of interior point algGrithms for linear pro-
gramming (Section 24), a mathematical method used in many business
and economics applications. Linear algebra and geometry were used
in the development of these algorithms, which have found many
applications, such as efficient routing of telephone traffic.

In addition to the design of algorithms, the mathematical sciences
pervade almost every aspect of computing: in designing hardware,
software, and computer networks; in planning for allocation of com-
puting resources; in establishing the reliability of software systems; in
ensuring computer security; and in the very foundations of theoretical
computer science. In addition, all kinds of computations are depend-
ent upon the branch of mathematics known as numerical analysis,
which seek3 to establish reliable and accurate means of calculation.
For example, a current success in numerical analysis is the application
of wavelet analysis (Section 8), which grew out of a body of theoretical
mathematics, to pmduce faster signal processing algorithms. Another
area of current research is computational complexity, which mathe-
matically analyzes the efficiency of algorithms.

In statistics, modern computational power has permitted the implem-
entation of data-intensive methods of analysis that were previously
inconceivable. One of these, the resampling methodwhich can be
thought of as a Monte Carlo method in the service of inferenceis
finding a wide range of applications in medical science, evolutionary
biology, astronomy, physics, image processing, biology, and econo-
metrics. The subject is still in its infancy, and one can expect more
sophisticated developments to be stimulated by new applications.
Computers and statistics are symbiotic in other ways as well. The
statistics community is becoming involved in the statistical analysis
and design of computer models arising in science and industry. The
use of randomization in algorithms (see Section 22) has proved to be
highly successful in certain kinds of applications and has stimulated
new research in the properties of pseudorandom number generators.
Meanwhile, other statisticians are assisting computer science by de-
veloping statistical techniques for characterizing and improving soft-
ware reliability.

As the language of computer modeling, mathematics is revolutioniz-
ing the practice of science and engineering. In many instances, com-
puter simulations have replaced costly experiments, for instance in
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aircraft design (Section 3). From visualization of the folding of protein
molecules (see Section 26) to calculation of combustion patterns (see
Sections 2 and 3), mathematical analysis combined with computing
power has produced profound insights. The development of reliable
and accurate simulations requires both understanding of the scientific
problem at hand and knowledge of the mathematical tools to describe
and evaluate the model.

Operations researchers have applied mathematics to a range of indus-
trial problems such as efficient scheduling and optimization of re-
sources, and statistkal methods are now commonplace in evaluating
quality and productiOty (see Sections 18 and 23). Control theoryan
interdisciplinary field crawing on mathematics, computer science, and
engineeringhas appikations to such problem3 as autopilot control
systems, chemical processing, and antilock brake systems on cars.

The advent of communications technologies has depended on mathe-
matical developments. Image processing, acoustical processing, speech
recognition, data compression, and other means of transmittirg infor-
mation all require slphisticated mathematics. One surprising example
of the application of theoretical mathematics to such areas came re-
cently from a branch of number theory dealing with elliptic curves. It
turns out that a research result from that area has produced an en-
tirely new approach for efficiently packing spheres. Because commu-
nications signals are sometimes modeled as higher-dimensional spheres,
this result will help in improving the efficiency and quality of trans-
missions.

Computer graphics have opened a whole world of visualization tech-
niques that allow mathematicians to see, rotate, manipulate, and in-
vestigate properties of abstract surfaces. In particular, the subject of
the mathematical properties of soap films"minimal surfaces that
are visible analogues of the solutions to optimization problems in
many fieldshas witnessed a recent breakthrough and a resurgence
of interest because of computer modeling, as described in Section 13.
Computer visualization techniques have also contributed to under-
standing the mathematics of surface tension in crystalline solids.
Computers are now routinely used in investigating many quer.tions in
number theory, a subject that examines properties of the integers and
often finds application to such areas as computer science and cryptog-
raphy. Symbolic manipulatorscomputers that perform operations
on mathematical expressions, as opposed to numerical calculations
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are powerful new instruments in the tool kit of many mathematical
scientists and are increasingly being used in the teaching of mathe-
matics.

THE UNIFYING SCIENCE

The mathematical sciences have not only served as part of the bedrock
on which science and engineering rests, but have also illuminated
many profound connections among seemingly disparate areas. Prob-
lems that initially seem unrelated are later seen to be different aspects
of the same phenomenon when interpreted in mathematical terms. In
this way mathematics serves to unify and synthesize scientific knowl-
edge to produce deeper insights and a better understanding of our
world.

The mathematical sciences themselves are unifying in profound ways
that could not have been predicted twenty years ago. The computer
has lent unprecedented technological power to the enterprise, but
mathematical sciences research still proceeds largely through individ-
ual creativity and inspiration. As the discipline becomes increasingly
interconnected, progress in mathematics will depend on having many
mathematicians working on many different areas. History has taught
us that the most important future applications are likely to come from
some unexpected corner of mathematics. The discipline must move
forward on all of its many fronts, for its strength lies in its diversity.

THE PRODUCTION OF NEW MATHEMATICS

It is enlightening to note how so many of the research topics men-
tioned here and in Appendix Bfor instance, the developments in
partial differential equations, vortices, aircraft design, physiology, and
global changehave developed out of the mathematical research
described in the 1984 Report, both in its body and in Arthur Jaffe's
appendix, °Ordering the Universe: The Role of Mathematics.'" The
recent developments in number theory and geometry follow naturally
from the Mordell conjecture, which was featured prominently in the
1984 Report. One can likewise see in the report of five years ago the
roots of the recent developments in topology and noncommutative
geometry. Although wavelet analysis was not mentioned in the ear-
lier report, its roots in Fourier analysis were discussed. Similarly, the
development of new algorithms was a prominent topic in the 1984
discussion, although the particular algorithms featured in Appendix B
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were not available then. These examples dramatically illustrate both
continuity and innovation in mathematics.

It should be noted that much of the work discussed in Appendix B is
the product of individual investigators. Mathematics is still very
much 'small science," with a tradition of individuals pursuing inde-
pendent research. This is a strength because it allows the total enter-
prise to span a great many topics, remain flexible, and be responsive
to the rest of science. However, the breadth required for many inves-
tigations calls for more collaborative work, which is practicable for
mathematicians regardless of distance but is hindered in practice by
the absence of adequate support for the occasional travel that is re-
quired. The recent innovations by the NSF (research institutes and
science and technojogy centers) and the DOD (university research
initiatives) provide valuable alternatives, both for established investi-
gators and postdoctorals.

The continued production of valuable new mathematics requires not
only that the number of individual investigators be increased as rec-
ommended in the 1984 National Plan, but also that the entire field
reach out to the rest of the scientific world. Collaborating with re-
searchers in other fields and making an effort to understand applica-
tions and improve the mathematical sophistication of others help the
mathematical sciences become increasingly robust and valuable. The
potential demandin terms of the number of possible applications
for mathematics research is great, but the actual demand may be lim-
ited by failure of the mathematics community to communicate with
others. Mathematics educators must design courses that meet the needs
of the many students from other disciplines. Likewise, mathematical
science researchers must write reviews and textbooks that are acces-
sible to nonmathematicians. More of them need to make the extra
effort to read journals and attend conferences outside their fields, to
learn how to communicate fluently with potential users and collabora-
tors, and to actively seek new opportunities for their work.

Finally, it is important to reemphasize that the research achievements
and opportunities mentioned here and in Appendix B were selected
from among a number of possibilities to illustrate the vigor and breadth
of the mathematical sciences. This compilation is not intended to be
comprehensive, nor is it intended to be a research agenda for the
future. Many excellent new ideas and proposals will come to the fore
as part of the natural development of the discipline, and these can and
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will compete for the attention of active researchers. The prospects are
indeed bright.

NOTES

See, for example, Mathematim/ Sciences: Scant Ratarch Trends, Board on Mathemati-
cal Sciences (National Academy Press, Washington, D.C, 1988) for a very different set
of topics. Other recent, mcce specialized reports also list significant research opportu-
nities. These include the BMS advisory panel reports (to the Air Force in 1987 and the
Navy I- 1987 and 1990) mentioned in Chapter 2; the American Statistical Association
report Challenges far the '90s, listed in Chapter 2; and Operations Research: The Next
Decade ("CONDOR report"), Operations Research, Vol. 36, No. 4 (July-August 1988), pp.
619-637.

'The NRC Board on Mathematical Sciences is producing a series of cross-discipli-
nary reports to foster this trend. The Institute for Mathematical Statistics has also
addressed the trend in its report Cress-Disciplinary Research in the Statistical Sciences
(Institute for Mathematical Statistics, Haywood, Calif., 1988).
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4 The Problem of Renewal

The key problem facing the mathematical sciences today remains what
it was in 1984: renewal. The pressing concerns of renewal are, Where
wiil the mathematical talent come from? How can young talent be
attracted to and retained in the career path? How can researchers be
helped to remain active and be enci.uragecl to serve as mentors for the
next generation? The problem of renewal is crucial because of the
increasing demand for mathematical scientists as educators and re-
searchers.

DEMAND FOR MATHEMATICAL SCIENTISTS

Mathematics and familiarity with mathematical modes of thought are
the foundations on which are built education in other scientific disci-
plines, and increasingly education in various areas of business, eco-
nomics, and social science. Mathematical scientists are needed as
educators to satisfy this growing demand, as well as to provide the
increasingly sophisticated training of new mathematical scientists
tleeded in increasing numbers by many quantitative areas of our complex
society. United States Ph.D. production (supplemented by a large
influx of foreigners) is at present barely sufficient to meet the current
needs of our educational institutions, and demographers warn that
faculties will need to grow after the year 2000 as the children of the
baby-boom generation reach college age.'

Mathematical scientists are necessary also as researchers, because the
expanding use of mathematics in all quantitative fields, the height-
ened mathematical sophistication of users, and the explosive growth
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in computer modeling are all fueling the demand for mathematics
research.2 Since World War II the trend toward quantification has
affected not only traditionally quantitative areas but also such fields
as biology, business, and economics. This trend seems to be continu-
ing and even to be increasing, and it may be regarded as a natural
phase of development that follows after observation, classification,
and other qualitative methods alone become inadequate. Mathematics
is vital to this progression because it is the language in which funda-
mental concepts and relationships can be precisely specified, manipu-
lated, and extended for greater understanding. The spread of com-
puter modeling has also generated a commensurate demand for mathe-
matical expertise: mathematical scientists often provide critical steps
in the process of developing computcr models and algorithms, and
they also address issues such as convergence criteria, error bounds,
and expected asymptotic behavior, which are important for purposes
of validation and central. Mathematicians need broad training in
order to be responsive in this research environment.

Thus, to avoid scriol* ueclines in scientific and technological educa-
tion, as well as shortages of urgently needed mathematical scientists
at all levels, mathematical sciences Ph.D. production will likely have
to increase in the near future. Assuring that the profession can attract
bright young people is a goal to be addressed now, before large incre-
mental demands for additional faculty and new mathematics strike.

SHORTFALL IN SUPPLY

The 1989 book Prospects for Faculty in the Arts & Sciences,3 by W. G.
Bowen and J. A. Sosa, warns of near-term faculty shortfalls in U.S.
colleges and universities. For instance, the authors project 9300 fac-
ulty openings in mathematics and the physical sciences in the period
1997 to 2002, but fewer than 7500 candidates, with the result that a
maximum of only 80% of available faculty slots will be filled, assum-
ing current student to faculty ratios. Bowen and Sosa project a very
flat supply of mathematics Ph.D. degree holders seeking U.S. aca-
demic employment over the next 15 years, averaging just 356 annu-
ally.

Doctoral degree production in the mathematical sciences declined
steadily over many years, falling from a peak of 1281 in 1972 to a low
of 688 in 1985. During recent years the percentage of U.S. citizens
receiving a Ph.D. in the mathematical sciences has dipped below 50%.
Some evidence, albeit inconclusive, suggests that the increase in sup-
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port given to graduate students and postdoctoral researchers since the
early 1980s is beginning to have an effect. After three years of essen-
tially flat Ph.D. production, data from the spring and summer of 1989
show that the total number of Ph.D.s awarded had increased by 12%
over the previous year, to equal approximately the level of production
in 1978. In addition, women constituted a record 24% of the U.S.-
citizen doctoral degree recipients. Whether or not these changes mark
the beginning of a bona fide turnaround, the rate of influx of talent
into the field will remain a high-priority concern for a number of
years.

REASONS FOR THE SHORTFALL

Changing Demographics

The problem of renewal is made more difficult by the shifting demo-
graphics of the United States. The report Workforce 2000 (Hudson
Institute, Indianapolis, Ind., 1987) has brought to public attention the
dramatic changes occurring in the U.S. population and in the work
force on which the economy depends. Its message that only 15% of
rin entrants to the work force between 1985 and the year 2000 will be
native-born white males has surprised many people, driving home the
point that in the future groups other than white males will provide
much of the new talent for the nation.

This is a major issue in all the sciences, which are now so heavily
dominated by white males. Science cannot continue to depend on the
brain power of white males; their participation rate in the sciences
would have to increase greatly to offset their declining numbers among
work force entrants. Therefore, all branches of science must greatly
increase efforts to attract and cultivate women and minorities. In
mathematics, where women hold less than one Ph.D. in five and the
numbers of blacks and Hispanics are almost vanishingly small, such
efforts will need to be very intensive. The issues were vividly por-
trayed in the human resources chapter of the recent NRC report Every-
body Counts.'

Cultural and Educational Problems

The problem of renewal in the mathematical sciences, exacerbated by
changing demographics, must be seen and attacked in a broader con-
text than that of graduate student recruitment and support. Attention
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must be paid to the entire mathematical pipeline, a requirement
emphasized in Everybody Counts:

The underrepresentation of minotities and women in scientific careers is well
documented and widely known. Less widely known is the general under-
representation of American students in all mathematically based graduate
programs. Evidence of disinterest in mathematics permeates all racial, socio-
economic, and educational categories, although the level of disinterest varies
veatly among different groups. Young Americans' avoidance of mathematics
courses and careers arises front inunersion in a culture that provides more
alternatives than gimulants to the study of mathematic& Without motivation
and effective opportunity to learn, few students of any background are likely
to persevere in the study of mathematics.. . .

Developing more mathematical talent for the nation will require fundamental
change in education. Our national problem is not only how to nurture talent
once it surfaces, but also how to make more talent rise to the surface. Al-
though more must be done, the United States is reasonably successful in tap-
ping and channeling the highly visible talent springs which develop without
special support from formal schooling. But these sources are inadequate to
our national need. We must, in addition, raise the entire water table.3

The forthcoming final report of the MS 2000 project will detcil many
crucial recruitment and educational reforms needed into the twenty-
first century. All will require substantial input from the mathematics
profession for planning and implementation.

What Discourages Talent

How do young people choose a career in the mathematical sciences?
A v...y few young people with mathematical talent come into contact
with interesting aspects of the subject and become committed to mathe-
matics at an early age, but this is very much the exception. Most
young people who decide to study mathematics make the commitment
much later, balancing their aptitudes against the possible disciplines
to pursue while weighing the quality of life offered in each profession.
Obtaining information about mathematical careers is often difficult
for the prospective mathematics major, because most teachers and
other students are poorly informed about the possibilities. An unusu-
ally enthusiastic high school teacher, a professor in the early years of
college, or some family friend or relative in the profession is the usual
adviser. The picture they convey to the young student necessarily
contrasts the joy of doing mathematics with the difficulty of obtaining
support for graduate and postdoctoral studies, the heavy teaching
loads even in the predoctoral years, and, after becoming established in
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research, the sudden decrease in the midyears in the ability to obtain
research support. All this is in sharp contrast to career opportunities
in the other sciences and in engineering.

The Leaky Pipeline

The mathematical sciences career path includes education from secon-
dary school through the completion of the Ph.D., and professional
development beyond that. In assessing the career path, this commit-
tee considered the quality of undergraduate and graduate education,
the efficacy and efficiency of the process by which students become
researchers and teachers, and the opportunities for continued profes-
sional growth throughout a mathematician's career. Renewal efforts
critically depend on what takes place in doctorate-granting depart-
ments, and that is the milieu this committee addresses. Although
problems exist throughout the career path, this discussion focuses on
those that directly affect the production of research and researchers.

On a national level, evidence such as that shown in Figure 4.1 docu-
ments the leaky educational pipeline in mathematics. About half the
students in the mathematics pipeline are lost each year. (Only U.S.-
citizen Ph.D.s are shown in Figure 4.1 because the chart represents the
flow of U.S. students through the mathematics pipeline.) In high
school and college, mathematics acts as a filter rather than as a pump;
students are deterred, and mathematical talent is not identified and
encouraged. As for graduate studies, the ratio of doctoral degree
recipients to bachelor's degree recipients is lower in the mathematical
sciences than in many other fields: over the period from 1991 to 1985,
this ratio averaged 4% for the mathematical sciences, whereas it was
6% for engineering, 8% for the life sciences, and 15% for the physical
sciences!' Clearly, talent and productivity are being lost throughout
the mathematics pipeline.

Many career path shortcomings affect the production of Ph.D. mathe-
maticians. In graduate school, only 18% of mathematical sciences
students receive research funds to support themselves, compared to
28% in the social sciences, 45% in engineering, and 50% in the physical
sciences (see Table 2.4). Upon receipt of a doctorate, the neophyte
matheli. tical scientist does not generally have the benefit of postdoc-
toral research training, but moves directly into an assistant professor-
ship. Only 21% of mathematical sciences junior faculty (assistant
professors and instructors) active in R&D received federal support in
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FIGURE 4.1 U.S. students in the mathematics pipeline.

SOURCE: From Mathematical Sciences in the Year 2000 project, reprinted from Na-
tional Research Council, A Challenge of Numbers: People in the Mathematical Sciences (Na-
tional Academy Press, Washington, D.C., 1990), p. 36.

1987, compared with 53% in chemistry and 67% in physics and astron-
omy.' Further along the pipeline, only 18% of Ph.D. mathematical
scientists in four-year colleges and universities surveyed in 1985 could
call research their primary activity, as compared tr. 13% of chemists
and 42% of physicists and astronomers!' The correlation between
research funding for junior researchers and research activity in later
years is striking. In addition, with the current reward structure, it
appears that the 82% of mathematical scientists who consider some-
thing other than research their primary activity are undervalued.

Mathematical sciences departments have adapted to these conditions
but are unable to overcome them. While preparing this report, the
committee asked four department chairs to write essays giving anec-
dotal accounts of problems and solutions. The problems described
often stemmed from the fact that departments in the mathematical
sciences have the broadecd mission in the university, comprising re-
search and graduate education, undergraduate education, upper- and
lower-division service, and community outreach and education. Par-
tial solutions often came from cooperation between departments and
their administrations in choosing priorities among these missions and
setting mutually satisfying goals.
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How an increase in fundingin this case, from the universitycan
lead to marked improvements in overall departmental quality is re-
flected in one department chair's statement:

Impending shortages of mathematicians and resulting increased competition
between universities have made it more vital than ever to establish a first-class
senior faculty. ... IThis) enabled us to argue for and achieve a general increase
in salary levels... In several cases research activity has improved as a result
of the new climate in the department. Indeed, in some instances this has
resulted in federal funding for those who had been off the rolls for some time.
Faculty improvement has begun to have an effect on our resources for the
future, especially with regard to the quality of our graduate students. . . we
now find a small group worthy of any institution,

The Reward Structure

Another chair's essay pointed out a problem with the academic re-
ward structure: "A number of faculty develop instructional material,
textbooks, and software lyet they] receive little recognition for these
efforts, and a portion of the faculty attach negative weight to these
activities. With our many missions, we have a responsibility to re-
ward excellence in a broad range of activities." Another stated that
"promotion or tenure without grant support is extremely lifficult."
Later, the same writer noted, "The implementation of Ibetter courses
for elementary and secondary school teachers] will require the partici-
pation of active mathematicians, although this is not always easily
achievable because of the possible detrimental effects on one's ca-
reer."

The current reward structure may be inferred from the results (Table
4.1) of a 1985 Conference Board for the Mathematical Sciences (CBMS)
survey, which asked university department chairs to rate the impor-
tance of various professional activities to promotion or salary deci-
sions.

ADDRESSING THE SHORTFALL

Recruitment

Recruitment requires an active effort on three fronts: improving the
quality of the career path within mathematics, improving the external
appeal of the profession, and performing recruiting drives. The first
two lay the groundwork to maximize the effectiveness of the third,
which is not discussed here. The quality of the mathematical sciences

6/
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TABLE 4.1 Department Chairs' Valuation of Professional

Activities, 1985

Professional Activity

Valuation by Department (Percent)
Mathematics Statistics
High* Low' high* Low*

Published research 96 0 100 0
Talks at professional meetings 42 5 25 11

Supervision of graduate students 34 7 81 0
Classroom teaching performance 70 3 71 6
Undergraduate/graduate advising 9 22 21 21

Service to dept., coll., or univ. 31 5 31 11

Activities in professional
societies or public service

22 8 31 6

Expository or popular articles 22 13 14 19
Textbook writing 9 35 12 50

"High" means 4 or 5 on a scale of importance running from 0 to 5; "Low" means
0 or 1.

SOURCE: Adapted from National Research Council, A Challenge of Nambers: People
in the Mathensalkal Sciences (National Academy Press, Washington, D.C., 1990).

career path must be improved in order for recruitment efforts to suc-
ceed. Bowen and Sosa state:

While many variables affect decisions to pursue graduate study, students are
surely more likely to seek Ph.D.'s, and to think RPriously about teaching and
research vocations, when employment opportunities in academia are attrac-
tive. The historical record offers strong support for this simple line of reason-
ing. . . . ['Me number of newly awarded doctorates in almost every field
incree....d dramatically in the 1960s. It is no coincidence that those were also
the years when the number of academic appointments was growing rapidly,
faculty salaries were rising, and financial aid for graduate study was widely
available. Subsequently, the grim academic labor markets of the 1970s were
accompanied by a sharp decline in the number of new doctorates earned,
especially by US. residents.9

It is reasonable that, in the absence of strong counter-influences, these
same correlations hold for individual fields. A career in the mathe-
matical sciences suffers by comparison with those in other fields, due
to long-term effects of funding imbalances, so that recruiting efforts in
mathematics are hindered. The 1984 National Plan and this committee's
updated recommendations address precisely these problems.
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Equal in importance to the effort to improve the career path is the
need to improve the external appeal of the profession. The mathemat-
ics profession must reach out to students and the general public to
show 1,!*e value and accessibility of mathematics; the image of rigid,
unquestionable theorems should be complemented by that of excited,
creative, and inspired people developing new mathematics. This is
part of the role of the Board on Mathematical Sciences, the Joint Policy
Board for Mathematics, and the professional societies, but is also a
challenge for individuals throughout the mathematical sciences com-
munity. The beauty, history, and excitement of mathematics are sel-
dom conveyed to students; in fact, too often they receive the impres-
sion that mathematics is all 150 years old and stagnant, and that
individuals cannot contribute except in limited and long-term ways.
Thus the field appears uninteresting ond intimidating.

Mathematics educators at all levels can reverse these negative images.
Students who see computer-oriented work as glamorous need to learn
that, without mathematics, the power of computers could not be ap-
plied to many real-world problems. Mathematical work crucial to
global warming studies, aircraft design, or medical imaging devices
should capture the attention of students who think that mathematics
is irrelevant to modern developments. Two high school student win-
ners of the 1988 Westinghouse Science Talent Search carried out new
mathematics work, exemplifying the fact that newcomers can contrib-
ute. Advances such as wavelets and Karmarkar's algorithm show that
it need not take decades for research to bear fruit. Finally, students
should know that some 525,000 persons have received some mathe-
matical sciences degree in the United States in the last 40 years. Most
are still in the work force, yet three-fourths of them are working in
areas other Urn the mathematical sciences. Clearly, a mathematical
sciences degree provides a flexible foundation.

Many parts of the 1984 National Plan would aid recruitment by im-
proving the career path to bring it more in line with those of other
sciences, by increasing the attractiveness of a life in mathematical
research, and by increasing the cadre of active, enthusiastic research-
ers, who serve as recruiters as well as mentors and positive role models.

Replenishment

Recruitment is just the start of renewal. If renewal is to be achieved,
young people who choose to specialize in the mathematical sciences
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must first be well trained and then must be encouraged to remain
active throughout their careers. The 1984 National Plan addresses
both of these goals. The former can be accomplished by providing
more research time for graduate students and postdoctorals, anc: by

ensuring support for established researchers who will art as mentors.
The latter can be attained by supplying a sufficient number of grants
to encourage continued active research and professional development.

The laboratory sciences generally provide longer periods of direct
interaction with faculty mentors than do the mathematical sciences:
close contact in a research context begins early in a graduate student's
career and txtends beyond the doctorate for additional training.
Beginning graduate students in the laboratory sciences may learn as
much from advanced graduate students and postdoctorals as they do
from the principal investigatorthe group provides a mutually sup-
portive and nurturing learning environment for all. The challenge for
the mathematical sciences is to create an analogous environment for
their own graduate students and postdoctorals.

The 1984 National Plan stipulates financial support for graduate stu-
dent and postdoctoral research training, and, by recommending an
increase in the number of established, funded investigators, provides
for an environment that fosters mentor-apprentice interaction. Profes-
sors with good abilitipc and track records as mentors should be en-
couraged by, for exan.plo, being provided with their own postdoctoral
funds, either individually or in groups.

An apprenticeship period is particularly important now because breadth
is becoming vital to research in the mathematical sciences. Research-
ers have become more problem oriented, and so each investigator
must be familiar with a wide variety of mathematical tools: unifica-
tion of the field relies on, and demands, broader experience. Many
mathematical scientists must also be adept in areas of engineering,
biology, management science, or other disciplines. This breadth is
apparent in much of the work profiled in Appendix B. The mathe-
matical sophistication of researchers in many fields is increasing, with
the result that mathematical sciences research problems are appearing
more frequently in a nonmathematical context. The graduate student
and postdoctoral research time stipulated in the 1984 National Plan
would provide the quality training needed to renew the intellectual
base of mathematics.
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Unless its members possess diverse skills and interests, the field will
not be able to respond to the demand for new mathematics arising in
novel areas. The scientific and technological competitiveness of the
United States is ever more dependent on our national ability to re-
spond quickly to new developments, with minimal time to intellectu-
ally "retool." Unifying the mathematical sciences and linking them
more strongly with other quantitative fields are important goals in
today's globally competitive environment.

Replenishment of the field also demands that the potential of well-
trained Ph.D. degree holders be realized. This can be fostered in part
by supporting a larger cadre of individual investigators, including
young investigators, as recommended in the 1984 National Plan.
Research funding can also enable travel and workshop attendance,
which expose researchers to new ideas; quicken their response to new
research directions, and provide intellectual invigoration that can
improve their ability to act as mentors. The availability of summer
support would encourage a larger cadre of university mathematical
sciences faculty to remain active in research. Although not all of these
faculty members will carry on research throughout their careers, far
too many currently cease such efforts within the first few years after
receipt of the Ph.D.

Broadening the Reward Structure

The multiple roles played by mathematical sciences departments
providing general and specialized education for a large fraction of the
college and university population, influencing society's mathematical
knowledge through elementary and secondary school teacher training
and expository writing, and developing new mathematics and future
mathematiciansare all essential. Therefore, a corresponding reward
structure is needed, so that people are encouraged to devote their
energies to whichever of these valuable tasks best suit them. This
change would make more efficient use of the human resources in the
field. A revamped structure should include rewards for the following
activities:

Teachingparticularly conscientious and effective teaching at
all levels, including the lower-division service courses and courses for
prospective teachers. Tailoring courses for nonmajors, directing and
improving the teaching abilities of graduate student instructors, and
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designing computer-oriented classes and their software are activities
that must be encouraged.

Mentoringguiding and enhancing the education of undergradu-
ate majors, graduate students, and postdoctorals. Good mentorsdevote
time and energy to this process, honing their methods and maintain-
ing broader interests than those necessary to do research alone, so as
to give their apprentices the breadth and depth required of todays
mathematicians.

Outreachcollaborating with people in other fields, recruiting
good students, particularly from among women and minorities, and
communicating with local education professionals and with industry.
Since the long-term health of mathematics depends on maintaining
strong ties with the other sciences, recruiting top-quality people, and
satisfying the mathematical needs of society and industry, depart-
ments and universities should encourageand reserve funds forall
of these outreach efforts.

In short, there should be a broader spectrum of respectable careers
available to people educated in the mathematical sciences.

NOTES

'Current mathematics faculties cannot accommodate this growth. The number of
full-time mathematics faculty at research universities actually decreased by 14% MET
the period 1970 to 1985; the simultaneous 60% increase in course enrollment was handled
by tripling the number of part-time faculty.

'The demand for nontesearch mathematizal scientists is also growing. The number
of secondary school mathematics students will rise before the college population does,
requiring more mathematics teachers. And the projected demand for mathematical
scientists at all levels is expected to increase by 29% between 1986 and 2000, compared
to a 19% growth in overall employment. Many of these people will be employed in
science and engineering. Considering all degree levels, the employment of mathemati-
cal scientists has already tripled over the period from 1976 to 1986, showing a 10%
annual growth rate second only to that for computer specialists among the science and
engineering fields.

'Bowen, W.C., and Sosa, J.A., Prospects for Faculty in the Arts 6. Sciences (Princeton
University Press, Princeton, N.J., 1989).

'National Research Council, Everybody Counts: A Report to the Nation on the Future of
Mathematics Education (National Academy Press, Washington, D.C., 1989).

°National Research Council, Everybody Counts, 1989, pp. 17-18.
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Mats from Table 2.1, Notional Research Council, A Otalknge of Mothers: People in
the Mathemetkel Scioto' (National Academy Press, Washington, D.C., 1990).

'Data from the Survey of Doctoral Recipients project office, National Research
Council (personal communication).

Wocterei MOWS& OW Engineers: A Decade of Mange. NSF 88-302 (National Science
Foundation, Washington, D.C., 1988).

'Bowen, W.G., and Soma, J.A., Prospects for Facility in the Arts & Sciences, p. 162.
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5 Recommendations

The 1984 Report described serious deficiencies in the situation of the
mathematical sciences (see Appendix A). These shortcomings were
reflected in the inability of the mathematical sciences research com-
munity to renew itself by attracting a suitably large and talented
cohort of students, and they suggested the prospect of decliniAg pro-
ductivity in research activities. The 1984 Report recommended a plan
for renewal, the National Plan for Graduate and Postdoctoral Educa-
tion 'n the Mathematical Sciences, which called for mathematical sci-
ences funding to balance that in the principal disciplines it supports,
namely, the physical and life sciences and nngineering. That 1984
National Plan has been only partially carried out: funding has risen to
some $130 million per year, a figure that is about $100 million per year
short of the 1984 plan's goal for 1989.

PRIMARY RECOMMENDATIONS

The committee believes it is imperative to meet the goals set out in the
1984 National Plan, but the funding to meet those goals should be
increased to $250 million per year, $225 million to cover the present
cost of the 1984 National Plan, plus $25 million to sup, Jrt coherent
programs that can effectively address the career path problems. In the
committee's judgment this funding level, if achieved within three to
five years beginning in FY 1991, will result in a reasonably balanced
situation, one that will allow the mathematical sciences community to
replace retiring members and also supply the growing needs of indus-
try and government. Note that the recent report by W.G. Bowen and
J.A. Soul' estimates that the supply to demand ratio for mathematks
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and physical sciences faculty in the 1990s will be only 0.8. This projec-
tion is doubly worrisome for the mathematical sciences with their
existing renewal difficulties.

Increased research funding alone will not be adequate to assure the
renewal of the mathematical sciences. Other serious deficiencies in
the mathematical sciences career path make it less attractive to stu-
dents than the paths in the other sciences and in engineering. These
deficiencies include markedly less opportunity for faculty research,
fewer graduate research positions with stipends, and fewer postdoc-
toral research positions. Then, too, students seem to perceive a sink-
or-swim attitude among many mathematical sciences faculty mem-
bers.2 These deficiencies exist despite efforts to increase graduate
student funding and postdoctoral opportunities over the past five
years. The drop-out rate from the mathematics career pipeline (begin-
ning at the undergraduate level and terminating at the doctoral level)
averages 50% per year, which is markedly higher than the correspond-
ing rates in the other sciences and engineering.

A significant part of any increased funding over the coming five years
should be used for coherent programs operated by departments, fac-
ulty groups, or even individual faculty members to (1) improve re-
cruiting of qualified students, particularly women and minority stu-
dents, (2) keep students within the field by providing mentors at
every educational level, (3) provide research opportunities at all stages
of students' careers, and (4) provide improved research opportunities
for junior faculty and better access to research facilities and collabora-
tors for senior faculty. The reward structure for mathematicians should
be modified to credit involvement in such activities. Comprehensive,
integrated programs should be encouraged and even solicited by
funding agencies as part of their mathematical sciences activities. The
National Science Foundation has already taken steps in this direction.

Thus this committee's three primary recommendations are as follows:

I. Implement the 1954 National Plan, but increase the level
of federal funding for the mathematical sciences to $250 million
per year. (The 1984 plan's goal of $180 million per year has
risen due to inflation to $225 million, to which this committee
has added $25 million per year for implementing Recommen-
dation IL)
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II. Improve the career path in the mathematical sciences to
continue to attract sufficient numbers of talented people and
to use the entire human resource base more effectively. Im-
plementation of the 1984 National Plan by itself would accom-
plish much toward this goal. The committee estimates that $25
million per year of the federal funds called for in Recommen-
dation I will significantly augment the 1984 National Pis
through the funding of coherent programs aimed at directly
encouraging young people, especially women and minorities,
to enter and remain in mathematical sciences careers. Mathe-
matical sciences departments should give increased recogni-
tion to faculty who act as mentors, who contribute to educa-
tion, and who interact with collaborators from other disciplines,
while universities should do more to help their mathematical
sciences departments meet their multifaceted missions; these
actions would improve the career path and thereby indirectly
encourage young people to enter and remain in mathematical
sciences careers. Cooperation between university mathemati-
cal sciences departments and their administrations is critical
for successful implementation of thib eecomniendation.

III. Because a wealth of striking research problemsmany
with potential applications to modern science and technol-
ogycurrently challenges mathematical scientists, and be-
cause added intellectual stimulation will contribute to the
renewal of the field, increase to 2600 (the level recommended
in the 1984 National Plan) the number of senior investigators
supported annually. This goal is implicit in Recommenda-
tions I and II, but it demands clear emphasis.

Mathematical sciences research has been highly productive over the
past five years. Furthermore, mathematicians have become increas-
ingly interested in transferring new mathematics into applied fields
and in working with users of mathematics. These trends are bringing
core and applied mathematics closer together as well as integrating
formerly distinct fields of mathematics. The resulting vigor has been
augmented by the rise of computation as a tool in research. Indeed,
the pace of research in the mathematical sciences is accelerating. Thus
the increase in productivity from additional funding is likely to be
disproportionately large. In the United States there are some 1900
federally supported senior investigators. The committee estimates

71



10,Ni milk*

RENEPRIC US, MATHEMATICS

that an additional 700 highly productive mathematical sciences re-
searchers are not supported. These people, who represent an opportu-
nity to sustain the vigor and productivity of the field, should be given
adequate funding.

Finally, the committee emphasizes that a vigorous mathematical sci-
ences enterprise in the United States is essential to addressing the
educational shortfalls so widely perceived by the public and their
representatives. Too few primary and secondary school teachers are
qualified to teach mathematics. Yet it is at this level that students
often decide that they can or cannot undertake careers in science or
engineering. Mathematics is perceived as a barrier to students who
might otherwise make ambitious career choices: this is especially true
for women and minorities.

Mathematics faculties in colleges and universities directly and indi-
rectly affect the quality of primary and secondary school mathematics
teaching. Preparation and continuing education for these mathemat-
ics professors must be improved if the United States is to remain
competitive in science and technology. Mathematics education is crucial
to achieving international competitiveness in all the sciences. Major
initiatives, as suggested above, are critical to any serious attempt to
address the educational problems so often lamented publicly. The
health and vigor of the mathematical sciences is a vital index in judg-
ing the prospects for national attempts to solve the science-based
problems of U.S. society.

DIRECTED RECOMMENDATIONS

Federal Agencies

Agencies Collectively

Continue to encourage the internal unification of the mathemalical
sciences and their outreach to other fields. Support efforts toward
community-wide implementation of the career path improvements
called for in Recommendation IL Continue to push foradequate funding
for the mathematical sciences and especially for the suppert of signifi-
cantly more senior investigators.
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National Science Foundation

Begin to increase the number of supported senior investigators in the
mathematical sciences. Continue to increase the number of supported
graduate student researchers and postdoctoi al researchers. Work with
national groups to address issues involving human resources.

Departnsent of Defense

Push for real growth in the mathematics budgets of the Air Force
Office of Scientific Research, the Army Research Office, and the Office
of Naval Research. Continue the progress of the DARPA and NSA
programs. Persuade tht leaders of Department of Defense agencies to
appreciate the importance of the mathematical sciences for national
defense and to understand that the long-range prospects for the de-
fense of the country must rest on a strong, continuing research base.

Department of Energy, National Institutes of Health, and
National Aeronautics and Space Administration

Reevaluate programs to take advantage of the role the mathematical
sciences can and do play. Increase support for the mathematical sci-
ences, which currently is concentrated too much in thn NSF and DOD.
This can have an adverse impact on 'he nation's total science, engi-
!leering, and technology research a:.. education, especially if DOD
funding of mathematics does not increase. Recognize that the future
quality of technology bases affecting agency missions is dependent on
the mathematics being done now.

Office of Science and Technology Policy

Send a clear message t3 the federal agencies that reversing past de-
clines in the mathematica! sciences is a continuing national priority.

Universities

Recognize the central importance of healthy mathematical sciences
departments to any university. Conduct in-depth reviews of the cir-
cumstances of mathematical sciences departments and work with
department chairs to develop and emphasize plans for departmental
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improvement. Discuss and clarify the department's mission and goals
and the administration's expectations of faculty members. Plan coor-
dinated action to address career-path and reward-structure issues and
undergraduate and graduate education standards.

In addition, work as intermediaries between mathematical sciences
departments and local government and industry. Apprise state tech-
nology offices of the importance of mathematics to the quality of
education and to the local economy. Make industry aware of the
contributions that mathematical scientists can make as both research-
ers and teachers.

Department Chairs and University Administrators

Make special efforts to recruit women and minorities. Reassess and
broaden reward structures so that they reflect the broad missions of
mathematical sciences departments: research, service teaching, un-
dergraduate and graduate education, and contributions to the national
precollege mathematics education effort. Reevaluate the use of gradu-
ate teaching assistantships, being mindful of the twin goals of high-
quality undergraduate instruction and well-tsalanced Ph.D. training.

Mathematical Sciences Community

Maintain the tradition of first-class research. Focus more attention on
career-path problems (Recommendation II). Offer better training,
including a commitment to a system of mentors for graduate students
and postdoctorals. Create programs that provide the breadth neces-
sary for today's mathematics research and applications. Establish
guidelines for evaluating and improving mathematical sciences Ph.D.
programs. Recognize the breadth of the mathematical sciences aca-
demic mission.

NOTES

'Bowen, W.G., and Sosa, J.A., Prospects for Faculty in the Arts & Sciences (Princeton
University Pre.ts, Princeton, N.J., 1989).

rThis observation has been made about faculty members in all of the sciences; see,
for instance, Kenneth C. Green, "A Profile of Undergraduates in the Sciences," American
Scientist, Vol. 77, No. 5 (Sept.-Oct. 1989), p. 478.
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Appendix A
Executive Summary of the 1984
Report*

I. BACKGROUND

The Ad Hoc Committee on Resources for the Mathematical Sciences
was established in June 1981 by the National Research Council's As-
sembly of Mathematical and Physical Science& to review the health
and support of mathematical research in the United States. Prelimi-
nary evidence presented to the Assembly by its Office of Mathematical
Sciences had suggested that in the nation's major universities external
support for mathematics had lagged considerably behind correspond-
ing support in other fields of science. The evidence was sufficiently
dramatic that the charge to the Committee contained more emphasis
on financial support than is usual for a review of the health of a
scientific field. Committee members with a range of scientific inter-
ests and experience were chosen to ensure that this review would be
carried out with a broad perspective.

Early in our Committee's deliberations, we came to three important
realizations:

Mathematics is increasingly vital to science, technology, and
society itself.

Paradoxically, while mathematical applications have literally

'Reprinted from Renewing U.S. Mathematics: Critical Resource for the Future (Na-
tional Academy Press, Washington, D.C., 1984), pp. 1-10.
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exploded over the past few decades, there has been declining atten-
tion to support of the seminal research which generates such benefits.

Opportunities for achievement in mathematical research are at
an all-time high, but capitalizing on these will require major new
programs for support of graduate students, young investigators, and
faculty research time.

These perceptions guided the activities of our Committee as we pur-
sued our charge.

II. THE MATHEMATICAL SCIENCES

A. Strengths and Opportunities

The period since World War II has been one of dazzling accomplish-
ments in mathematics. The flourishing of the discipline has run hand-
in-hand with burgeoning applications, which today permeate the theo-
retical fabrics of other disciplines and constitute important parts of
the intellectual tool kits of working scientists, engineers, social scien-
tists, and managers. These developments were nurtured by coopera-
tion between the universities and the federal government, and fueled
by a national commitment to strengthening scientific research and
education. The injection of federal funds into universities, combined
with a pervasive sense of the importance of research, attracted num-
bers of the best young minds in the country into science and mathe-
matics and propelled the United States into world leadership in the
mathematical sciences.

The field expanded and diversified enormously during this period.
Mathematical statistics matured. Operations research was born.
Mathematics in engineering flowered with prediction theory, filter-
ing, control, and optimization. Applied mathematics extended its
reach and power, and the discipline of mathematics grew at a ineath-
taking pace?

Since World War II, the impact of mathematics on technology and
engineering has been more direct and more profrund than in any
historical period of which we are aware. When we entered the era of
high technology, we entered the era of mathematical technology.
Historically, the work of Wiener and Shannon in communication and
information theory highlights the change. The mathematical under-
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pinnings of the computer revolution, from von Neumann onward, and
the sophisticated mathematical design of the fuel-efficient Boeing 767
and European Airbus airfoils further exemplify the increased impact
of applied mathematics.

The discipline of mathematics also advanced rapidly and contributed
to the solution of problems in other fields of science. Fundamental
questions in algebra, geometry, and analysis were addressed with
ever-increasing conceptual generality and abstraction; new interac-
tions between parts of contemporary mathematics and physics, as in
gauge field theory, remind us of the payoff of mathematics for other
sciences. Indeed, in the span of little more than the past two years we
have seen four Nobel Prizes awarded to U.S. scientists for largely
mathematical work, much of it employing mathematical structures
and tools developed over the last few decades: Chandrasekhar in
astrophysics, Cormack in medicine (tomography), Debreu in econom-
ics, and Wilson in physics.

Major research opportunities for the future exist in the study of non-
linear phenomena, discrete mathematics, probabilistic analysis, the
mathematics of computation, the geometry of three- and four-dimen-
sional manifolds, and many other areas) The infusion of mathematics
into society will continue and accelerate, creating further opportuni-
ties and increased demand for mathematical scientists.

B. Prospects for the Future

There are reasons to be quite concerned about the future, in spite of
current vitality and past achievements. In mathematics, the country is
siill reaping the harvest of the investment of human and dollar re-
sources made in the mid-h.-late 1960s. Investments since that time
have not been adequate to assure renewal of the field, to provide the
seminal work supporting expanded applications, or to pursue the
remarkable opportunities in prospect.

During the past few years, concern about the future of mathematics
has been reflected in an unprecedented probing and searching within
and by the mathematical sciences community. The state of mathemat-
ics, its applications, and its future promise have been assessed in:

the report of the COSEPUP Research Briefing Panel on Mathe-
matics presented to OSTP and NSF
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its supplementary report to DOD and the DOD-University Forum

reports to the NSF Advisory Committee for the Mathematical
Sciences by J. Glinun, on the future of mathematics, and I. Olkin and
D. Moore, on statistics

the G. Nemhauser/G. Dantzig report on research directions in
operations science

the report of tlw NSF/DOD Panel on Large-Scale Computing
in Science and Engineering

reports of the NRC Committees on Applied and Theoretical
Statistics and on the Applications of Mathematics.

In all of these the theme recurs: in mathematics itself and in its capa-
bilities ior application there is a multitude of major opportunities, but
the resources, people, and money are not available to capitalize on
them.

Our Committee has found the support situation in mathematics to be
worse than the preliminary evidence suggested:

Since the late 1960s, support for mathematical sciences research in the
United States has declined substantially in constant dollars, and has come to

be markedly out of balance with support for related scientific and technologi-
cal effrrts. Because of the growing rdiance of these efforts on mathematics,
strong action must be taken by the Administration, Congress, universities,
and the mathematical sciences community to bring the support back into
balance and provide for the future of the field.

III. THE WEAKENING OF FEDERAL SUPPORT

A. How It Happened

In many ways, the history of support foi mathematical research re-
sembles that of other sciences: a rapid buildup of both federal and
university support through the 1950s; some unsettling changes in the
early-to-mid-1960s; then a slackening of federal support in the late
1960s and early 1970s, because of increased mission orientation of
federal R&D and reductions in federal fellowships; and finally, more
than a decade of slow growth,
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However, mathematics faced special problems, owing to its concentra-
tion at academic institutions and its dependence for federal support
on two agencies: the National Science Foundation (NSF) and the
Departmnt of Defense (DOD).' In the mid-1960s, increased focus on
mission-oriented research (a change accelerated by the 1969 Mansfield
Amendment) caused DOD to drop nearly all of its support of pure
mathematical research and parts of basic applied work as well. Then
dramatic reductions in federal fellowships beginning in 1971 removed
virtually all federal support of mathematics graduate students and
postdoctorals. Compensation for these two types of losses could only
be made at NSF, but at NSF constant dollar support of mathematical
research decreased steadily after 1967. We estimate the loss in federal
mathematical funding to have been over 33% in constant dollars in the
period 1968-73 alone; it was followed by nearly a decade of zero real growth,
so that by FY 1982 federal support for mathematical scienca research stood
at less than two-thirds its FY 1968 level in constant dollars.5

While federal support for related sciences also dippeti in 1969-70,
these sciences received (constant dollar) increases in NSF funding in
the years 1970-72 and thereafter, as well as support from other agen-
cies; mathematics did not.' This resulted in the present imbalance
between support for mathematics and related sciences:

Comparisons of Federal Support in Institutions of Higher
Education for Three Fields of Science, 1980

Chemistry Physics
Mathematical
Sciences

Doctoral scientists in R&D 9,800 9,200 9,100
Faculty with primary or secondary

activity in R&D 7,600 6,000 8,400
Faculty in R&D federally supported 3,300 3,300 2,300
Approximate annual Ph.D. production 1,500 800 800
Graduate research assistants

federally supported 3.700 2,900 200
Postdoctorals federally supported 2,500 1,200 50

SOURCES: NRC Survey of Doctoral Recipients, National Science BoardStatus
of Science Review.

B. Why It Escaped Notice

Three things made it difficult for mathematicians and policy-makers
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to quickly grasp the full extent of the weakening of support for mathe-
matics:

After the sharp decline of 1968-73, universities increased their
own support for many things which earlier would have been carried
by research grants. It was only after financial problems hit the univer-
sities in the mid-1970s that the severe lack of resources became evi-
dent.

The growth of computer science support masked the decline in
mathematics support because of the federal budget practice of carry-
ing "mathematics and computer science' as a line item until 1976.

The explosion of the uses of mathematics caused funding to
flow into applications of known mathematical methods to other fields.
These were often labelled 'mathematical research" in federal support
data. The category grew rapidly, masking the fact that support for
fundamental research in the mathematical sciences shrank.

C. Its Consequences

The absence of resources to support the research enterprises in the
country's major mathematical science departments is all too apparent.
In most of them, the university is picking up virtually the total tab for
postdoctoral support, research associates, and secretarial and operat-
ing support; as a result, the amounts are very small. Graduate stu-
dents are supported predominantly through teaching assistantships,
and (like faculty, have been overloaded because of demands for under-
graduate mathematics instruction, which have increased 60% in the
last eight years. The number of established mathematical scientists
with research support, already small in comparison with related fields,
has decreased 15% in the last three years. Morale is declining. Prom-
ising young people considering careers in mathematics are being put
off.

Ph.D.'s awarded to U.S. citizens declined by half over the last decade.
A gap has been created between demand for faculty and supply of
new Ph.D.'s. It may well widen as retirements increase in the 1990s.
There is the prospect of a further 12% increase in demand for doctoral
mathematical scientists needed for sophisticated utilization of super-
computers in academia, industry, and government.
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The most serious consequence has been delayed. In a theoretical
branch of science with a relatively secure base in the universities,
sharp reduction in federal support does not leave large number i of
scientists totally unable to do their research, as might be the case in an
experimental science. There is a considerable time lag before there is
a marked slowing down of research output. The established research-
ers and the young people who were in the pipeline when reduction
began carry the effort forward for 15 or 20 years, adjusting to in-
creased teaching loads, to decreased income or extra summer work,
and to simply doing with fewer of most things. If the number of first-
rate minds in the field is large at the onset of the funding reduction, an
effort of very high quality can be sustained for quite some time.

This is what has been happening in the mathematical sciences in the
United States for over a decade. The situation must be corrected.

IV. FUTURE SUPPORT

A. The Needs of Research Mathematical Scientists
The research community in the mathematical sciences is concern. _ted
heavily at academic institutions spread throughout the country. Over
90% of productive research mathematicians are on the faculties of the
nation's universities and colleges. Their numbers equal those of physics
or chemistry, some 9,000-10,000.

To pursue research effectively, mathematical scientists need:

1. regearch time
2. graduate students, postdoctorals, and young investigators of

high quality
3. research associates (visiting faculty)
4. support staff (mostly secretarial)
5. computers and computer time
6. publications, travel, conferences, etc.

During the fifties and sixties, these needs were effectively met by the
injection of federal funds for research into universities. That spurred
remarkable growth and propelled the United States into world leader-
ship in the mathematical sciences. The erosion of support since the
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late 19608 has slowed momentum and decreased the rate of influx of

outstanding young people into the mathematical sciences.

B. A Plan for Renewal

What has been described makes it evident that realization of the po-
tential for mathematics and its applications requires a substantial
increase in extra-university support. Because there is often an indirect
relation between mathematical developments and their applications,
significant support from industry will not be forthcoming. Thus, the
role c f government is crucial.

Incremental budgetary increases of the usual sort cannot deal with the
severe inadequacy of support. We estimate that the federal support
needed to strengthen mathematical research and graduate education
is about $100 million more per year than the FY 1984 level of $78
million. Significant additional resourc,:s are needed in each of the six
basic categories we identified earlier. Tile resources will:

allow mathematical scientists to capitalize on the future oppor-
tunities provided by the dramatic intellectual developments now oc-
curring

provide for the attraction and support of young people to help
renew the field

sustain the work of established researchers.

As the framework for this, we have determined through analysis the
elements of a program to renew U.S. mathematics. This program can
be carried out through expansion oi support to the $180 million level
over the next five years. This Nati.mal Plan for Graduate and Postdoc-
toral Education in the Mathematical Sciences has these features:

Each of the approximately 1,000 graduate students per year
who reaches the active level of research for a Ph.D. thesis would be
provided with 15 months of uninterrupted research time, preceded by
two preceding summers of unfettered research time.

Two hundred of the 800 Ph.D.'s per year would be provided
with postdoctoral positions averaging two years in duration at suit-
able research centers.
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There would be at least 400 research grants for young investi-
gators (Ph.D. age three to five years).

At least 2,600 of the established mathematical scientists who,
with the young investigators, provide the training for the more than
5,000 total Ph.D. students arwl the 400 total postdoctorals would have
sufficient supported research time not only to conduct their own re-
search, but also to provide the requisite training for theseyoung people.

Support would be provided for associated research needs of
the investigators.

We believe this plan to be consistent with the priorities set by the
mathematical sciences research community through several self-stud-
ies in the last few years.

C. Imp It /mutation

It will be up to the Administration and Congress to decide what na-
tional priority to assign to these needs. We would remind them that
what is at stake is the future of a field central to the country's scien-
tific and technological effort. While the uses of mathematics in other
fields have been supported, somehow the needs of fundamental mathe-
matics were lost sight of for over a decade. Since there is about 15-
year delay between the entry of young people into the field and their
attainment of the expected high level of performAnce, this decade of
neglect alarms us. We urge immediate strong action, in the fore, of a
five-year "ramping up° of federal support for the mathematical sci-
ences (18% real growth annually, for five y tars). An effort to renew
mathematics support has already begun at the National Science Foun-
dation. This must be continued for five nrire years, with a parallel
effort at the Department of Defense. This will bring support back into
balance and allow for renewal, provided Department of Energy re-
sc urces going to the mathematics of computation are significantly
increased to sustain the initiative which we recommend in this field.

Appropriate utilizatioa of present and future resources requires a
well-thought-out and consistent set of priorities in the expenditures of
funds. Recommendations of this type have recently been set forth in
the COSEPUP Mathematics Briefing Panel Report prepared for OSTP
and its companion report specifically for DOD, as well as recent re-
ports of the NSF Advisory Committee for the Mathematical Sciences.
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We have built on these community efforts to systematically and con-
sistently direct funding trends. The efforts must continue, to ensure
the most efficient and fruitful tinxation of resources.

uccess will also depend on action and understanding within the
nation's universities. For too long, they have been silent about the
fact that the level of external support for research in their mathemati-
cal science departments is markedly out of balance with the general
level of support for science and engineering in the country. The
disparity is reflected in the working circumstances of their mathemati-
cal faculties and graduate students. As added resources become avail-
able, they must be used in part to ease the strain on the mathematical
science departments, which embody mathematical research in the United
States.

Still, the pot; which has the fullest agenda before it is the mathe-
matical sciences research community. It is obvious to anyone that if a
field gets into the sort of extreme situation we have described, the
associated research community must bear much of the responsibility.
We urge the mathematical scientists to greatly step up efforts to in-
crease public awareness of developments in the mathematical sciences
and of the importance of the broad enterprise to the nation; to set their
priorities with long-term needs in mind, and to develop mechanisms
for effectively presenting their needs to the universities, to the Ad-
ministration and to Congressall with a renewed commitment to the
unity of the mathematical sciences.

NOTES

'Now the Commisoion on Physical Science% Mathematic% and Resources.
'In addition, computer science developed from roots in mathematics and electrical

engineering, then spun off to become a separate discipline. It is important in reading
this report not to confuse computer science with the mathematical sciences. The rela-
tionship of the fields is discussed in Appendix A [of the 1984 Report).

'These research opportunities are discussed in detail in Chapter II Id the 1984
Report).

'The two agencies account for 93% of support. Today, the role of the Department
of Energy in supporting work at the interface of mathematics and computation is of
ever-increasing importance, however.

'FY 1960 was not a peak budget year for mathematical research. It is the year ;71 the
period 1966-70 for which we have the most accurate data.

'Chemistry and physics constant dollar budgets at NSF dipped in 1969-70, then
increased by over 25% in the years 1970-72, and continued to grow until the late 1970s.
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Appendix B
Recent Research Accomplishments
and Related Opportunities

This appendix describes research achievements in the mathematical
sciences and outlines prospects and opportunities that these achieve-
ments open up. The richness and diversity of these achievements,
which span core mathematics and a wide range of applications, point
to the vigor, creativity, and depth and breadth of current research in
the mathematical sciences. The unification and cross-fertilization of
areas within core mathematics, increased reaching out to applications
(which often uncovers unusual and unexpected uses of mathematics),
and the growing role of the computer are all themes that are illus-
trated in these descriptions.

It should be emphasized that this list is only a selection that is not
intended to be complete or comprehensive, nor is it intended to be an
agenda for the future. Many important achievements and opportuni-
ties are not discussed for lack of space. If past patterns continue, a
number of new achievements that we cannot visualize now will open
up yet newer opportunities. It is interesting and significant to note
how many of the achievements described in this appendix were not
even suggested in the appendix "Ordering the Universe: The Role of
Mathematics" in the 1984 Report.

The committee would like to thank the following individuals for their
assistance in preparing this appendix:

W. Ballhaus, N. Bre 5low, R.L. Bryant, D.M. Burns, S. Childress, W.
Cleveland, R.R. Coifman, G.B. Dantzig, H. Flaschka, J. Geanakoplos,
J.G. Climm, L. Gordon, L.F. Greengard, J. Harris, T. Hoist, W-C. Hsiang,
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A.M. Jaffe, A. Jameson, N. Jewell, D.S. Johnson, R.M. Karp, H. Kocak,
A. Kupianinen, H.B. Lawson, F.T. Leighton, C.E. Leith, G.L. Lieber-
man, A. Majcia, A. Marden, B. Mazur, W. Murray, F.M. Odeh, CS.
Peskin, P. Seymour, L.A. Shepp, T.C. Spencer, P. Switzer, M.S. Water-
man, S. Winograd, and J.A. Yorke.

The following topics are discussed:

1. Recent Advances in Partial Differential Equations
2. Vortices in Fluid Flow
3. Aircraft Design
4. Physiology
5. Medical Scanning Techniques
6. Global Change
7. Chaotic Dynamics
8. Wavelet Analysis
9. Number Theory

10. Topology
11. Symplectic Geometry
12. Noncommutative Geometry
13. Computer Visualization as a Mathematical Tool
14. Lie Algebras arid Phase Transitions
15. String Theory
16. Interacting Particle Systems
17. Spati .. Statistics
18. Statistical Methods for Quality and Productivity
19. Graph IV4nois
20. Mathematical Economics
21. Parallel Algorithms and Architectures
22. Randomized Algorithms
23. The Fast Multipole Algorithm
24. Interior Point Methods for Linear Programming
25. Stochastic Linear Programming
26. Applications of Statistics to DNA Structure
27. Biostatistics and Epidemiology

SYNOPSIS OF TOPICS

In the first section, "Recent Advances in Partial Differential Equa-
tions," the items discussed are formation of shocks in non-linear waves,
recent advances in elliptic equations, free boundary problems, and
finally some remarkable advances in exactly solvable partial differen-
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tial equations. 'Vortices in Fluid Flow" (Section 2) continues some of
these general themes to discuss vortex motion in fluid flow, a phe-
nomenon of great importance in many applications, including the
accurate tracing of hurricanes, the study of blood flow through the
heart, the efficient mixing of fuel in internal combustion engines, air-
craft flight, and the manner in which radiotelescopes sense distant
galaxies through the motion of galactic lets.

"Aircraft Design" (Section 3) illustrates the use of computational fluid
dynamics, a technique that has matured so that it is now seen as the
primary aerodynamic design tool for any problem. Analogous com-
puter models are described in Section 4, 'Physiology," which dis-
cusses computational fluid models of the heart and other organs.
Modern medical scanning techniques using X-rays or nuclear mag-
r tic resonance depend critically on algorithms deriving from the
mathematics of the Radon transform. Recent progress in emission
tomography is based on some newly developed algorithms of a very
different sort that have probabilistic elements; these developments are
described in Section 5, "Medical Scanning Techniques." Finally, "Global
Change" (Section 6) discusses the key role played by computational
fluid dynamics in global circulation models that are used in the analy-
sis of climate change on a worldwide scale.

Section 7, "Chaotic Dynamics," shows how ideas of Poincaré on aperi-
odic orbits for ordinary differential equations, complemented by ideas
from topology, filfferential geometry, number theory, measure theory,
and ergodic theery, plus the ability of modern computing facilities to
compute traiectLories, have led to a body of core mathematics that has
many interesting and import.int applications.

"Wavelet Analysis" (Section 8) outlines how classical ideas growing
out of Littlewood-Paley and Calderón-Zygmund theory have been
developed within core mathematics and then have led to new and
very efficient numerical tools for analysis of a wide variety of prob-
lems. Algorithms based on wavelet analysis promise to significantly
speed up .,mmunications and signal-processing calculations. The
discussion titled "Number Theory" (Section 9) centers on a classic
area of core mathematics that is actively and vigorously moving for-
ward, S pur red on in part by the resolution of the Mordell i_onjecture in
the early 1980s. Advances of great significance for the future include
new iesults on the local-to-global problem in number theory and in
arithmetic algebraic geometry, and significant progress on Fermat's
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last theorem. Section 10, "Topology," notes important advances in
major problems in low-dimensional topology, including remarkable
connections with Yang-Mills theory, and recent advances in knot the-
ory that involve a striking and unexpected connection with von Neu-
mann algebras and mathematical physics.

Section 11, "Symplectic Geometry," is devoted to important rei.ent
developments in that field, including the use of nonlinear elliptic
equations to establish a form of the Heisenberg uncertainty principle,
the discovery of new kinds of symplectic structures, and a basic ad-
vance in the understanding of regions of stability for area-preserving
maps of the plane.

"Noncommutative Geometry" (Section 12) describes a broad spectrum
of very interesting developments involving a link between analysis
and geometry and how the ideas of differential geometry extend to a
noncommutative setting. This is an excellent example of cross-fertili-
zation between areas within core mathematics and the building of an
internal unification.

The availability of powerful computers is stimulating research in core
mathematics. Section 13, "Computer Visualization as a Mathematical
Tool," indicates how computer graphics can be used as a tool in mini-
mal surface theory and other areas of geometry to enhance under-
standing and provide experimental evidence stimulating conjectures.

The exposition in Section 14, "Lie Algebras and Phase Transitions,"
displays the rich and deep interaction between this topic in statistical
mechanics and a number of areas of mathematics, including especially
the Kac-Moody Lie algebras. "String Theory" (Section 15) discusses
another topic in physics that relies heavily on developments from core
mathematics. Section 16, "Interacting Particle Systems," indicates how
systems similar to those discussed in the context of phase transitions
can have applications in the study of biological systems, image proc-
essing, and for medical and defense purposes. "Spatial Statistics"
(Section 17) describes an area that addresses some overlapping prob-
lems and uses new statistical tools for handling data in multidimen-
sional arrays. Section 18, "Statistical Methods for Quality and Produc-
tivity," discusses problems, opportunities, and new methods for ad-
dressing important problems of national interest and significance.

"Graph Minors" (Section 19) surveys some recent results in graph
theory, which open up new avenues for research especially important
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in the design of algorithms. Section 20, i'Mathematical Economics,"
describes some important recent developments and discusses hew
several parts of core mathematics, especially differential topology,
have played key roles in the analysis of general equilibrium theory for
incomplete markets, a new departure that is a better model for real
markets than the now classic model for complete markets.

The next group of topics as a common general theme the search
for new and efficient algorithms. "Parallel Algorithms and Architec-
tures" (Section 21) concerns the design of algorithms to take advan-
tage of parallel architectures, a problem not o:ily for computer scien-
tists but also bOy mathematicians working in large-scale computation.
Here the idea ,s to see how problems that seem to be inherently se-
quential can be parallelized. Section 22, stRandomized Algorithms,"
describes recent progress in the development of these new kinds of
algorithms. Such algorithms are useful in primality testing, with re-
sulting consequences for cryptography, in sorting and searching algo-
rithms, in the design of distributed computing systems, and in many
other areas. The subject of Section ?3, "The Fast Multipole Algo-
rithm," is a new, very efficient algorithm for computing interactions
in many-particle systems. This algorithm will have many applications
in the modeling of high-powered electron beam devices and in mo-
lecular dynamics, which affects theoretical studies of chemical kinet-
ics.

The next two sections discuss recent advances in algorithms for nu-
merical optimization; Section 24 is devoted to the new and very im-
portant interior point methods for linear programming, which pro-
vide an alternative to the classic simplex methods and are beginning
to have a significant practical impact in the design of telecommunica-
tions networks and the solution of large-scale logistics planning and
scheduling problems. Section 25 discusses yet another approach
stochastic linear programming, a technique that allows one to include
non-deterministic elements in the formulation and solution of a prob-
lem. Thereby real problems that involve uncertainties in future be-
havior or availability of resources can be better modeled.

Sections 26 and 27 discuss an array of applications of mathematics in
various additional areas. "Applications of Statistics to DNA Struc-
ture" includes as an application the statistical analysis of options for
cutting the DNA sequence to aid in the mapping processes, and ana-
lyzing the evolutionary process at the genetic level. "Biostatistics and
Epidemiology" is devoted to the use of statistics in epidemiology,
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including survival analysis, analysis of incideme rate and relative
risk, and deconvolution techniques for estimating Infection rates and
incubation periods from observed data.

1. RECENT ADVANCES IN PARTIAL DIFFERENTIAL
EQUATIONS

An important trend of the last 15 years has been the great progress
made in understanding nonlinear partial differential equations (PDEs).
Many physical phenomena are described by partial differential equa-
tions, e.g., fluid flow, electromagnetic fiekis, gravity, and heat. Roughly
speaking, linear partial differential equations govern small vibrations
or small disturbances from equilibrium, while nonlinear equations
govern large disturbances. The real world is nonlinear. Since the
mid-1970s, understanding of nonlinear equations has grown much
deeper. Finally, in the last few years, some of the most important
equations from geometry, physics, and engineering have been suc-
cessfully studied. Many other equations are still too hard, and much
more work is needed. Among the important problems solved recently
are the following.

Formation of Shocks in Nonlinear Waves

In one space dimension, a small, smooth initial disturbance will be
propagated by any truly nonlinear wave equation into a shuck after a
finite time. In more than four space dimensions, such shocks do not
have to form. In three di-nensions, "most" wave equations lead to
shocks, but only after an exponentially long time. Moreover, an
important class of equations (those satisfying a natural geometric
property caned the "null condition") do not build up shocks. Very
recently there have been significant advances for one of the most
important nonlinear equations, Einstein's equations for gravitational
waves. At large distances and after a long time, one has a detailed
picture of how gravitational waves behave. Very difficult and inter-
esting questions remain in the siudy of Einstein's equations. Of spe-
cial interest is the formation of black holes.

Elliptic Equations

Another important class of partial differential equations arises in
geometry, when one tries to construct surfaces with prescribed curva-
ture. These equations are called nonlinear elliptic differential equa-
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tions. A general theorem on regularity of solutions of elliptic equa-
tions with boundary conditions was recently proved, making it pos-
sible to treat boundary conditions that arise inevitably in real prob-
lems. This result is a basic step forward in the analysis of partial
differential equations.

Important progress has been made also on some singular elliptic
equations, namely those having "critical nonlinearity." If the nonlin-
ear term in such an equation were made slightly weaker, then the
equation could be regarded as a small perturbation of a linear prob-
lem, but at the critical nonlinearity this becomes impossible. An out-
standing equation of this kind occurs in the Yamabe problem, in which
one is asked to deform a curved manifold until it has constant (scalar)
curvature. A complete solution to this problem has recently been
established.

Free Boundary Problems

An iceberg melting in the sea, the flow of oil and water through a
reservoir, and crystal growth are examples of free boundary problems
governed by partial differential equations. For the melting iceberg,
the temperature flow in the iceberg is governed by one parabolic
partial differential equation, the temperature flow in the water around
the iceberg by another, and the boundary between ice and water is
given by a third equation. The three equations are coupled. What
makes the problem very hard is the fact that the domains where the
differential equations are satisfied keep changing with time, and are
not known ahead of time, Recently proposed techniques have already
led to new regularity theorems for free boundary problems and prom-
ise further results.

Exactly Solvable Partial Differential Equations

Remarkably, a number of nonlinear PDEs can be solved exactly. These
equations admit stable solutions (solitons) that persist even after inter-
action with other soli tons. Recently, equations for solitons have been
used to solve the Schottky problem, an outstanding open problem in
the theory of Riemann surfaces.

The method used to solve soliton equations may be illustrated by the
case of the Korteweg-deVries (KdV) equation, which describes the
propagations of water waves in a long, narrow channel. At a single

93

102



94

APPENDIX 11

instant of time, we imaene the shape of the water wave to be frozen
and rigid. We then bombard the rigid shape with imaginary quan-
tized test particles. By studying how the test particles are scattered,
one can reconstruct the shape of the wave. Thus, the scattering data
provide an alternative description of the wave at a fixed time. Instead
of asking how the shape of the wave changes with time, we can there-
fore ask how the scattering data evolve with time. When rewritten in
terms of scattering data, the KdV equation becomes amazingly simple,
and the complete solution may be writ' n down by inspection. In
particular, the highly stable behavior of solitons is explained for the
case of the KdV equation.

More recently, a number of physicall: interesting PDEs have been
solved completely by analogous methods, including the Kadomtsev-
Petviashvili (K-P) equation for weakly two-dimensional water waves,
and the sine-Gordon and nonlinear Schrödinger equations. Explicit
solutions of the K-P equation successfully predicted the results of
experiments in water tanks, and a combination of theoretical and
numerical analysis has been applied to model the behavior of a Jo-
sephson junction. Remarkable connections have been discovered be-
tween explicit solutions for nonlinear waves, exact solutions of statis-
tical mechanics problems in two dimensions, and the Jones polynomi-
als for knots, some of which are discussed below in sections on phase
transitions and topology.

2. VORTICES IN FLUID FLOW

Intense swirling or vortex motion is a primary feature of many prob-
lems, including the accurate tracing of hurricanes and studies of blood
flow through the heart, efficient fuel mixing in carburetors, aircraft
flight, and the manner in which radiotelescopes sense distant galaxies
through the motion of galactic jets.

Governing much of this flow is a complicated set of nonlinear partial
differential equations called the Navier-Stokes equations; these equa-
tions are derived from Newton's laws of motion and include the fric-
tional effects of viscosity. Intuition suggests that this frictional effect
is extremely small in air or rapidly moving water, and this is con-
firmed by experiments. The simpler partial differential equations
obtained when this coefficient vanishes are called Euler equations.
These are accurate enot.gh for studying the movement and accumula-
tion of vortices.
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Recent ingenious large-scale computer simulations using these equa-tions reveal unexpectedly that the sheets where vorticity typically
accumulates clump and concentrate in an amazing fashion. In re-sponse to these discoveries, a new mathematical theory of "oscilla-
tions and concentrations' has developed using potential theory and
fractal (Hausdorff) measures. New kinds of 'solutions* for the Euler
equations are being introduced. One outgrowth of this theory is an
explicit criterion to check whether numerical calculations for vortex
sheets actually converge to solutions of the Euler equations. Conver-
gence has been verified for many calculations of importance.

The vorte :,. sheets in the applications just described involve fluid moving
at rapid !peed but still much less than the spced of sound. Com-
pletely different phenomena transpire when the vortex sheets are
supersonic, as they are for the new space planes and for galactic jets in
astrophysics. One recent success in the alliance between large-scale
computing and modern mathematical theory is the discovery of a new
mechanism of nonlinear instability for supersonic vortex sheets. Recent
large-sca;e simulations have demonstrated that all supersonic vortex
sheets exhibit nonlinear instability, belying the predictions of stability
made in the 1950s and 1960s.

One of the most important problems in fluid dynamics, an extension
of the study of vortices, is the understanding of turbulence, which
occure when the frictional effect is extremely small but not negligible.
Uncle standing turbulence requires the mathematical analysis of solu-
tions of the Euler and the Navier-Stokes equations in the limit of small
viscrsity. This analysis is ongoing.

3. AIRCRAFT DESIGN

Within the last five years, full simulations of a whole aircraft have
appeared. Such a computation usually starts with steady Euler equa-tions that accurately describe the flow outside the boundary layer.
Such flows are smooth until the Mach number, M, comes close to 1.For Mach numbers in the transonic rangethat is, less than but closeto Ismall shocks are generated from a typical airfoil that dramati-
cally increase the drag. It is a mathematical theorem that in almost all
cases such shocks cannot be avoided. Since the cruising efficiency of aplane is roughly proportional to MUD, where L is lift and D is drag, itis imperative for manufacturers to design aircraft that minimize shocks.Of course if M exceeds 1, there is no avoiding or even minimizing
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shocks, and we have the inefficiency of the Concorde. In the past 15
years, great effort has been put into designing two-dimensional airfoil
cross-sections that at some cruining speed or range of cruising speeds
with M less than 1 have minimal shocks. When a wing cross-section is

chosen, the flow at design conditions is computed and compared with

wind tunnel results.

To extend the computation to the whole aircraft, new computational
capabilities have been added. The complex geometrical configura-

tions demand new methods not only for discretizing the equations but

also for handling the enormous volume of data. Currently 9 e chal-

lenge is to resolve higher-dimensional shocks and vortex &Lees to
predict viscous effects as described in the previous section. The most

us,ful end product of simulations is a determination of how surface

pressure varies with such parameters as Mach number and the angle

of attack. Varying parameters on the computer is much more eco-
nomical than doing enormous numbers of experiments in a wind tunnel.

The simple model provided by the Euler equations is remarkably good,

airplane flight being basically stable. But key elements are missing.
Despite considerable effort, there is still no good mathematical model
for the turbulent boundary layer, and when one is found it will in-
crease the size of the computation at ieast as much as by adding a
dimension. An ultimate goal of design is to pick an optimal pressure
distribution and then find the aircraft shape that corresponds to it.
Such inverse problems also increase drastically the computational needs.
The hope is that computer hardware speedups and algorithmic im-
provements will combine to make these goals achievable.

One area of particular note is in the design of aircraft engines. A

typical example is a turbomachinery compressor simulation where
instantaneous temperature contours are calculated. This computation
is based upon time-dependent Navier-Stokes equations. Simulations
show viscous wakes created by the blades and how some of the blades
chop or break these wakes into different pieces, creating an extremely
complex flow pattern. This flow pattern would be difficult or impos-
sible to describe and adjust without dependable mathematical models
coupled with computer simulations.

For very-high-altitude high-speed conditions, numerical simulations
are also being used for vehicle design. At these altitudes, air can
dissociate into its atomic constituents and even eventually ionize,
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creating a situation that is extremely difficult to simulate in ground-
based experimental facilities. As a result, numerical flow simulations,
with the appropriate air chemistry models added, are currently being
used as an integral part of the design process for many high-speed or
atmospheric entry vehicles.

The best summary of the situation has been given by Goldhammer and
Rubbert:

The present state-of-the-art has progressed to the point where the design
engineer no longer considers Computational Fluid Dynamics (CFD) to be an
irritant imposed on him by a seldom seen researcher, but rather CFD is re-
garded as the primary aerodynamic design tool for any problem, and the wind
tunnel is treated as more of an evaluation and confirmation tool.,

4. PHYSIOLOGY

In the realm of physiology mathematical modeling has come into its
own over the last ten years. Today there are computational models of
the heart, the kidney, the pancreas, the ear, and many other organs.
Many of these models rely on fluid dynamics.

Physiological fluid dynamics has a long and illustrious history. Le-
onardo da Vinci first described the vortices that form behind heart
valves and that enable the valves to avoid backflow by closing while
the flow is still in the forward direction. Leonhard Euler first wrote
down the partial differential equations for blood flow in arteries. With
the recent flowering of computer technology and numerical algorithms,
there is unprecedented opportunity to simulate the fluid dynamic
functions of the human body at a level of detail sufficient to be of use
in the understanding and treatment of disease.

For instance, blood flow in the heart is governed by coupled equations
of motion of the muscular heart walls, the elastic heart valve leaflets,
and the blood that flows in the cardiac chambers. Computer solutions
allow one to study both normal and diseased states, and lead to the
design of prosthetic devices such as artificial valves and artificial
hearts. The methods used have a very general character since they are
applicable to any problem in which a fluid interacts with an elastic
medium of complicated geometry. Among these are the flow of sus-
pensions, blood clotting, wave propagation in the inner ear, blood
flow in arteries and veins, and airflow in the lung. Like much of
computational fluid dynamics, this work pushes computer technology
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to its limits, and future progress is strongly tied to the further devel-
opment and availability of supercomputers.

Early research began with the development of a two-dimensional
computer model of the left side of the heart. The model was designed
for computer experiments on the mitral valve, which has the approvri-
ate symmetry for two-dimensional studies. The computer experimens
were touccessfully compared with physiological experiments, such as
those studying the optimal timing of the atrial contraction in relation
to that of the ventricular contraction. The computer model was trustwor-
thy enough to use for parametric studies leading to optimal designs of
prosthetic cardiac valves.

With supercomputers, it has become possible to extend this work to
three dimensions. This raises the Irospect of additional applications
such as flow through the aortic valve, the mechanical consequences of
localized damage to the heart wall, interactions of the right and left
ventricle, flow patterns of blood in the embryonic and fetal heart, the
fluid dynamics of congenital heart disease, and the design of ventricu-
lar-assist devices or even total artificial hearts.

A general-purpose three-dimensional fiber-fluid code has already been
developed that solves the equations of motion of a viscous incom-
pressible fluid coupled to an immersed system of elastic or contractile
fibers, using the vector architecture of the Cray. The fiber-fluid code
has been tested on problems involving an immersed toroidal tube
composed of two layers of spiraling fibers. In one of these tests, the
fibers were contractile (Le., muscular) and peristaltic pumping was
achieved by sending a wave of muscle contraction around the tube.
With a sufficiently strong contraction, a small region of entrained
fluid was seen being convected along at the speed of the wave.

A three-dimensional fiber-based model of the four-chambered heart
and the nearby great vessels is now under construction for use with
the general-purpose fiber-fluid code described above. It includes the
right and left ventricles, realistic aortic and pulmonic valves complete
with sinuses and the beginnings of their respective arteries, and pre-
liminary versions of the mitral and tricuspid valves.

5. MEDICAL SCANNING TECHNIQUES

Significant progress in inverse problems in medicine has occurred in
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the last five years. CAT scanning itself is no longer a research topic
but is an established, fixed technology. The new advances have oc-
curred in magnetic resonance imaging (MRI) and in emission tomogra-
phy, which are similar to CAT scanning from a superficial mathemati-
cal viewpofnt in that they each ; ivolve indirect measurements of a
three-dimensional quantity or image of interest and then use mathe-
matical inversion of the measured quantities to reconstruct the actualimage.

In MR1 a large magnet and surrounding coil measure the resonating
magnetic field inside the patient, due to an unknown density of hydro-
gen atoms, which act like little spinning magnets. The mathematics
used to reconstruct the hydrogen density uses the inverse Fourier
transform applied to the measured signal. This allows the determina-
tion of the density of magnetic spins, or the concentration of hydrogen
atoms insiee the patient, which in turn gives an image of the interior
tissue similar to but much better than a CAT scan. Bones appear black
instead of white because, while they have a high X-ray attenuation
density, they have a low hydrogen density, being largely calcium.Just as in CAT scanning, mathematics is one of the chief technologiesin MRI, the main feature being fast and accurate inversion of the
Fourier transform.

The new mathematics of emission tomography (ET) is vry different
from that of either CAT or MRI and involves a nonlinear inversion
procedure. In ET a compound such as glucose is introduced into thebody with the carbon atoms in the glucose being radioactive isotopes
of carbon. Counts of radioactivity are measured in a bank of detectors
surrounding the body. One mathematically inverts the detected countdata anu reconstructs the emission density; i.e., one finds where the
raJionuclide was deposited by the body's metabolism. A beautiful
and elegant new algorithm produces an emitter-density that to a first
approximation maximizes the probability of seeing the actual observed
counts. This statistically based maximum likelihood algorithm hasthe great advantage that it addresses the main limitation of ET, namely
that it is count-limited. The mathematics involves no Fourier trans-
forms, but instead the convergence of a nonlinear iteration scheme.
Given the universality of mathematics, it should not be surprising that
the algorithm is new only to ET: it is a known algorithm that first
arose in the 1960s in a problem in decryption of Soviet codes, Emis-sion tomography has so far been mainly used not as a clinical tool, but
to study metabolism in the human being.
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6, GLOBAL CHANGE

Of the many environmental issues that have received public attention
in recent years, perhaps the most farreaching is the possible effect of
human activity on the earth's climate. The greenhouse theory holds
that recent modification of the atmospheric gaseous composition will

result in a gradual warming of the earth's surface as well as a cooling
of the upper atmosphere, leading to an unprecedented (in historical
times) modification of the earth's climate. However, natural climatic
changes can mask this increase, and there is a critical need to study
quantitatively the magnitude of the greenhouse effect within a global
climate model under various scenarios, past, present, and future.

The basic theoretical principles rest on the notion of an equilibrium
climate, where incoming solar radiation, which is absorbed in the
atmosphere and at the surface of the earth, must equal the thermal
energy radiated out into space. This balance determines the average
temperature at the surface of the earth. The greenhouse effect occurs
when the outgoing radiation is partially absorbed by particles and
molecules in the upper atmosphere, or troposphere, principally the
top 10 to 15 kilometers.

Three-dimensional general circulation models provide a means of
simulating climate on time scales relevant to studies of the green-
house effect. These models, which numerically solve a nonlinear system
of partial differential equations, are being used to compute differences
between a climate forced by increases in greenhouse gases and a con-
trnl or current climate. The underlying equations are Euler's equa-
tions, with simplifications to take into account the thinness of the
atmosphere relative to the distances across the surface of the earth.
Long-term predictions must account for thermal adjustment of the
oceans, over a time scale of decades, and models need to be devised
that are suitable for this purpose. It is important to track not only
mean surface temperatures, but also spatial and temporal changes in

temperature variability, which can have equally important conse-
quences. These studies will require accurate codes and precise esti-

mates of sensitivity to forcing by the various greenhouse gases on a
variety of time scales. As in other geophysical flow calculations,
reliable turbulence models are needed in order to estimate turbulent
transport.

At a more theoretical level, a basic goal should be to identify the
"minimal" dynamical description of the atmosphere-ocean-land that
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could, on the time scale of decades, provide reliable estimates of cli-
matic change. Methods from dynamical systems theory (see the next
section) can be used to reduce the dimension of the system and thereby
isolate aa -attractor" involving only the dynamical variables essential
to greenhouse studies. Detailed but economical calculations of climate
sensitivity might then be accessible, giving d new understanding of
the influence various incremental combinations of greenhouse gases
have on the equilibrium climate.

7. CHAOTIC DYNAMICS

The early observathns of trajectories of celestial objects appeared to
indicate periodic or, at worst, quasiperiodic behavior that could easily
be accounted for in mathematical terms. But at the turn of the twen-
tieth century, Poincare realized that the behavior of trajectories of
celestial bodies could be immensely complicated, displaying a 'cha-
otic° motion, forever oscillating yet irregular and &periodic. More-
over, Poincare identified a crucial property of systems with chaotic
trajectoriessensitive dependence on initial data, which is of particu-
lar importance for scientists because very small errors in the measure-
ment of the current system state would result in very unrealistic !nrg-
term predictions.

In 1963, a detailed numerical examination of a specific system of dif-
ferential equations from meteorology revealed unexpected chaotic
trajectories. This work not only pointed out the presence of chaotic
trajectories in a specific non-Hamiltonian system but also suggested
new directions of research in the theory of dynamical systems. Mathe-
maticians and scientists have come to recognize that the amazingly
complicated behavior that Poincare spoke of, and that was demon-
strated in these calculations for new kinds of attractors, was in fact
present in a wide variety of practical nonlinear systems from ecology,
economics, physics, chemistry, engineering, fluid imchanics, and
meteorology.

The advent of the computer was essential to these developments, but
equally important were the deep mathematical insights. Indeed, the
theory of dynamical systems has a rich mathematical tradition, one
that involves many areas of mathematics: topology, number theory,
measure and ergodic theory, and combinatorics have all been essential
to the understanding of dynamical systems, especially the ones exhib-
iting chaotic behavior. For instance, in dynamical systems with two or
more attractors (that is, several types of long-term behavior depend-
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ing on the initial state), the ability to predict long-term behavior re-
quires a detailed knowledge of the boundary between these different
kinds of initial states. These boundaries can be extremely complicated
and strange"fractais." These fractal basin boundaries are currently
under investigation by scientists, who need to understand physical
systems, and by topologists who see fascinating mathematical struc-
tures occurring in a natural way.

A further important development was the realization that regularities
can be expected whenever chaos arises through an infinite series of
"period doubling bifurcations" as some parameter of the system is
varied. Ideas explaining these regularities eventually led to rigorous
proofs of the phenomenon. The first rigorous proof carried out the
detailed analysis on a computer using a procedure called interval
analysis: all calculations are performed with error bounds, so that
results lie in intervals. The computer adds or multiplies intervals in
which the correct results lie so that all errors are perfectly bounded.

In the analysis of dynamical systems, there is a great need to compute
dynamical entities other than chaotic attractors. Mathematicians are
now beginning to create new numerical methods for computing the
stable and unstable manifolds of which Poincari spoke. In a related
vein, identification of "inertial manifolds" for partial differential
equations is a promising route in the quest to reduce the essential
dynamics of an infinite-dimensional dynamical system to that of an
appropriate finite-dimensional one. Finally, mathematical investiga-
tions of dynamical systems without the concern of immediate applica-
bility, such as work describing complicated flows on spheres, have
yielded important insights.

8. WAVELET ANALYSIS

Wavelet analysis, a recent and exciting development in pure mathe-
matics based on decades of research in harmonic analysis, is now
addressing important applications in a wide range of fields in science
and engineering. There are opportunities for further development of
both the mathematical understanding of wavelets and their ever-ex-
panding applications.

Like Fourier analysis, wavelet analysis deals with expansions of func-
tions, but in terms of "wavelets." A wavelet is a given fixed function
with mean 0, and one expands in terms of translates and dilates of this
function. Unlike trigonometric .lolynomials, wavelets are localized in
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space, permitting a closer connection between some functions and
their coefficients and ensuring greater numerical stability in recon-
struction and manipulation. Every application using the Fast Fourier
Transform (FFT) could be formulated using wavelets, providing more
local spatial (or temporal) and frequency information. In broad terms,
this affects signal and image processing and fast numerical algorithms
_r calculations of integral operators (not necessarily of convolution

type).

Wavelet analysis is an outgrowth of 50 years of mathematics (Little-
wood-Paley and Calderón-Zygmund theory) during which harmonic
analysts, having realized the difficulties inherent in answering the
simplest questions involving the Fourier transform, developed sim-
pler flexible substitutes. Independent of this theory within pure mathe-
matics we have seen variations of this multiscale (multiresolution)
approach develop (over the last decade) in image processing, acous-
tics, coding (in the form of quadrature mirror filters and pyramid
algorithms), and in oil exploration. As a companion to the FFT it has
been used in analyzing rapidly changing transient signals, voice and
acoustic signals, electrical currents in the brain, impulsive underwater
sounds, and NMR spectroscopy data, and in mo:iitoring power plants.
As a scientific tool it has been used in sorting out complicated struc-
tures occurring in turbulence, atmospheric flows, and in the study of
stellar structures. As a numerical tool it can, like the FFT, reduce
considerably the complexity of large-scale calculations by converting
dense matrices with smoothly varying coefficients into sparse rapidly
executable versions. The ease and simplicity of this analysis have led
to the construction of chips capable of extremely efficient coding and
compression of signals and images.

9. NUMBER THEORY

There has been impressive progress in number theory in the past five
years on several fronts, which in turn has opened up exciting new
opportunities. One achiev.. nent has been a significant advance in our
understanding of what is known as the "local-to-global" principle of
certain algebraic curves. The idea of the "local-to-globar principle,
which is contained in the classical theorem of Hasse-Minkowski, hasto do with a single homogeneous quadratic equation (in many vari-
ables) and its solutions. To illustrate it, take a simple case

a - W2 + b X1 +e-r+dZ +eWX+f.YZ= 0,
where the coefficients a,b,c,d,e,f are integers. With these coefficients
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fixed, the question one wishes to resolve is, Are there integer values

of the variables W,X,Y, and Z (not all zero) that "solve" the above
equation, i.e., for which the left-hand side is zero? The Hasse-Minkow-

ski theorem answers yes, if and only if (1) there is a positive integer D

such that for each integer N there are integer values of W,X,Y,Z

(depending on N) having greatest divisor D and satisfying the con-
straint that a W2 + b X2 +c. Y2 + d . Z2 +e- WX + f YZ is a multiple

of N; and (2) there are real numbers W,X,Y,Z that 'solve" the above

equation.

There are reasons (which aid one's intuitive grasp of such problems)
to think of the criteria (1) and (2) as asserting the existence of nontriv-
ial local solutions of the equation, while integral solutions of the equation

can be thought of as global solutions. This explains the adjective
local-to-global."

The Hasse-Minkowski theorem has been an enormously fruitful theme

for research in the quest of broader domains in which the "local-to-

global" principle or some modification of it retrains valid. One may
ask, To what extent does a similar result hold for homogeneous equa-
tions of degree higher than 2? It is an old result that such a principle

is false for curves of degree 3.

A substitute for the "local-to-global" principle for equations of the
above type ("curves of genus one"), which would be (if precisely
controlled) every bit a6 useful as the original local-to-global" prin-
ciple, is the conjecture of Shafarevitch and Tate. This conjecture says
that, accounting fel- things in an appropriate way, the "failure of the
local-to-global principle" is measured by a finite group. This
Ehafarevitch-Tate group, which measures the extent to which the lo-
cal-to-global principle is not valid, is an important object in its own
right: it is the gateway to any deep arithmetic study of elliptic curves,
and to the very phrasing of conjectures that guide much research in
this area. The conjectures of Shafarevitch-Tate and related ones of
Birch and Swinnerton-Dyer comprise some of the great long-range
goals of the discipline, and a piece of them has recently been estab-
lished in a very interesting context.

Another facet of number theory that has seen an enormous amount of

activity is arithmetic algebraic geometry. This has figured promi-
nently in work on the arithmetic Riemann-Roch theorem, in the unify-

ing conjectures connecting Diophantine problems to Nevanlinna thr
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ory and to differential geometry, and in recent results giving a new
and very "geometric" proof of Mordell's conjecture over function
fields--a proof that may translate to an analogous new proof in the
number field context.

A third significant development of the last five years consists of the
conjectures and results that bring some old Diophantine questions
closer to the heart of issues perceived to be central to immediate
progress in arithmetic. One might mention the recent conjectures of
Serre, which suggest much important work to do in the theory of
modular forms. Following these ideas, using a prior ingenious con-
struction, it has recently been shown that the Shimura-Taniyama-Weil
conjecture (that all elliptic curves over Q are modular) implies Fermat's
last theorem. Finally, a beautiful and simple conjecture (often called
the ABC conjecture) has been formulated: there is a universal constant
e such that, if A and B are nonzero integers with C = A 4- B, then
IA 8 Ci is less than the ell power of the radical of A B C, where the
radical of a number is the product of the distinct primes dividing it.
An essentially immediate consequence of the ABC conjecture is an
"asymptotic" version of Fumat's last theorem. It is also true that a
vast number of other deep consequences would follow from the same
conjecture.

10. TOPOLOGY

Two of the most basic problems in topology are the following.

I. Suppose one is given two manifolds (the n-dimensional generaliza-
tion of surfaces) M and M'. Flow can one recognize w hether the two
manifolds are topologically the same, like a sphere and an elliptical
surface, or whether they are topologically different, like a sphere and
a torus (inner tube)? We seek invariants to distinguish between differ-
ent manifolds.

II. Suppose that one manifold K is embedded in a higher-dimensional
manifold M in two different ways. ls it possible to deform one embed-
ding into the other? In the most basic and classical case, one studies
an embedding of the circle K into ordinary three-dimensional space M.
Such an emoedding is a knot, and the goal is to understand when a
given knot can be untied, and more generally when one given knot can
be deformed into another. Again, invariants are sought to distinguish
nonequivalent embeddings of K into M.
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For manifolds M of dimension 5 and above, these problems were
essentially solved in the late 1960s and early 1970s. Dimensions 3 and
4 are much harder, and are still far from being completely understood.
Nevertheless, there has been dramatic progress on low dimensions in
the last few years.

For instance, for problem (I) in 4 dimensions, the role of smoothness of
possible equivalences of manifolds M and M' has come -L.: the fore.
Recently the following remarkable example was found: there is a
smooth 4-dimensional manifold M that is topologically equivalent to
ordinary 4-dimensional Euclidean space R4 by a "crinkly" non-sa-nnoth
map, but that cannot be transformed smoothly to Euclidean space.
Perhaps even more amazingly, it has since been learned that the number
of such different examples is uncountably infinite. This phenomenon
occurs in no other dimension except 4. It came as a complete surprise,
both because dimension-4 behavior is so different from the previously
known behavior of other dimensions, and because of the remarkable
source of the discovery. In fact, the key invariants used to distinguish
the exotic 4-manifold from ordinary Euclidean space have their origin
in the study of the Yang-Mills equations, originally introduced in
particle physics. Thus, an important connection has arisen between
particle physics and topology.

Important invariants for the study of problem (I) were also discovered
for dimension 3. These invariants, called Casson invariants, recently
shed light on a classical and fundamental problem of topology, the
Poincark conjecture. The Poincare conjecture states that in 3 dimen-
sions, the sphere is the only possible manifold (closed without bound-
ary) whose simplest topological invariant, the fundamental group, is
zero. The analogue of this conjecture has been proved in all dimen-
sions except 3. The 4-dimensional case was done as part of the work
described above. However, the 3-dimensional case is very difficult,
and the statement may actually be false. A standard attempt to pro-
duce a counterexample was based on the so-called Rochlin invariant.
The Casson invariants work shows that this line of attack cannot yield
a counterexample.

Another remarkable recent development in topology concerns Prob-
lem (II), in the classical context of knots. The main invariant in clas-
sical knot thin-my was the Alexander polynomial, developed in the
1930s. A weakness of the Alexander polynomial is that it fails to
distinguish between a knot and its mirror image. In 1984, in the
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course of study of questions on von Neumann algebras (a branch of
functional analysis motivated by quantum mechanics), formulas were
discovered that bore a striking similarity to classical algebraic formu-
las from the study of knots and braids. Pursuit of this connection led
to the discovery of a powerful new invariant of knots and links, now
called the Jones polynomial, which has the important advantage that
it distinguishes a knot from its mirror image. It is also easy to com-
pute.

Both the Jones polynomia! and the work on exotic 4-manifolds arose
through mathematical problems with strong connections to physics.
This led to the conjecture that a quantum field theory, an exotic vari-
ant of the laws of particle physics, could be constructed, in which the
experimentally observable quantities are the invariants described. Such
a quantum theory has recently been constructed, and although the
work is highly plausible, it has not been rigorously proved. Finding a
complete, rigorous proof of these calculations is a challenge for future
research.

11. SYMPLECTIC GEOMETRY

A fundamental development of nineteenth-century mathematics was
Hamiltonian mechanics. A mechanical system composed of many
particles moving without friction is governed by a complicated system
of differential equations. Hamilton showed that these equations take a
simple standard form when the Hamiltonian (the total energy of the
system) is taken as the starting point. Harniltonian mechanics revealed
hidden symmetries in classical mechanics problems and was of tre-
mendous importance in the discovery of statistical mechanics and
quantum theory.

Today, mathematicians study Hamiltonian mechanics from a global
and topological point of view. The basic object of study is a "symplec-
tic manifold," a higher-dimensional surface on which Hamilton's
procedure to pass from Hamiltonian funaions to differential equa-
tions can be implemented. The study of symplectic manifolds is called
symplectic geometry, and it has been revolutionized in the last few
years. A major breakthrough was the use of nonlinear elliptic equa-
tions (see Section 1, "Recent Advances in Partial Differential Equa-
tions") and holomorphic curves. This yields a form of the Heisenberg
uncertainty principle with many applications, including demonstrat-
ing the existence of exotic symplectic structures on Euclidean space
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and leading to the solution of long-standing conjectures on the num-
ber of fixed points of symplectic transformations. The solution of
these conjectures is in turn closely related to the Floer cohomology of

topology

If we restrict a symplectic structure to a surface of constant energy, we
get a "contact structure." Along with the recent progress in symplec-
tic geometry has come important work on contact structures. In par-
ticular, exotic contact structures have been discovered on Euclidean
space, distinguished from the standard contact structure by "over-
twisting" on embedded discs. Contact geometry has been recently
used to show that any open manifold free of obvious topological
obstructions can be given a complex structure and embedded into
complex N-dimensional Euclidean space. (This works in dimension 6
and above.) The result thus relates complex analysis, contact geome-
try, and topology.

There isa very substantial branch of mathematics of the border line be-
tween symplectic geometry and dynamical systems. It deals with the
iteration of area-preserving maps of the plane. Such maps 0 are the
most basic examples of symplectic transformations. In addition to their
theoretical importance in core mathematics, they arise in a range of
applications from the orbits of asteroids to the confinement of plasmas
in a Tokamak machine. As explained in the section on chaotic dynam-
ics, iteration of 0 can lead to highly complicated unstable behavior.

In the area-preserving case, however, the chaotic behav ior coexists
with a large class of orbits that are completely stable and predictable,
and indeed are almost periodic. Such stable behavior occurs on a
family of curves, called KAM curves, that surround those fixed points
of 0 where the map twists. 7 he discovery of KAM curves was a major
development of the 1950s and 1960s. It is rn important and difficult
problem to understand how the plane splits into regions of stable and
unstable behavior. A particular case of this problem is to predict the
size of the largest KAM curve. This is significant for applications,
because the old KAM theory unfortunately could deal only with tiny
curves. KAM curves of reasonable size were proved to exist in the last
ten years. Recently, with computer-assisted methods, the sizes of the
largest KAM curves for (presumably typical) examples of area-pre-
serving maps have been computed to within 10%.

More generally, the state of understanding of the breakdown of stabil-
ity for area-preserving twist maps used to be that KAM curves are
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destroyed by nonlinear resonances that occur in orbits of unfavorable
"frequency.TM In the last few years it has been discovered that stable
behavior persists even for the resonant frequencies. Although the
curves of KAM theory are destroyed by resonances, there remain stable
Cantor sets of fractal dimension less than I. This is an important
change in our view of how stability can arise in complicated nonlinear
systems. Much remains to be done in this field. Indeed, complete
understanding of area-preserving maps of the plane is a remote goal.

12. NONCOMMUTATIVE GEOMETRY

A major mathematical development of the 1960s was to establish an
intimate link between the field of analysis and the fields of topology
and geometry. This unification of seemingly diverse areas of mathe-
matics set the stage for numerous interrelations and the tone of mathe-
matics today. The development of modern index theory provided this
path. As a first step, mathematicians realized that geometric invari-
ants of manifolds could be computed as analytic invariants of certain
Laplace operators and Dirac operators on these manifolds. An ab-
stract version of these ideas has become known as K-theory.

In the past five years we have seen a rejuvenation of K-theory, leading
to the discovery of cyclic homology, cyclic cohomology, entire cyclic
cohomology, and graded (i.e., super) KMS-functionals. These differ-
ent topics all have been points of view within the new field of non-
commutative geometry. Basically, the ideas of differential geometry
have been shown to extend to a noncommutative setting. In particu-
lar the calculus of differential forms and the homology of currents can
be extended to deal with spaces such as the leaves of a foliation, the
dual space of a finitely generated non-Abelian discrete group (or Lie
group), or the orbit space of the action of such a group on a manifold.

Such spaces are badly behaved as point sets and do not lend them-
selves to the usual tools of measure theory, topology, or differential
geometry. They are better understood by means of associating a ca-
nonical algebra to each space. In the case of an ordinary manifold,
this algebra is a commutative algebra of functions on the manifold,
such as the algebra of essentially bounded measurable functions on
the manifold (for measure theory), the algebra of continuous functions
vanishing at infinity (for topology), or the algebra of smooth functions
with compact support (for geometry). In the realm of noncommuta-
tive geometry, these algebras are replaced by noncommutative alge-
bras. In special cases these algebras are von Neumann algebras or
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C.-algebras; they lead to the generalization of de Rham cohomology
and to its applications, K-tbeory and index theory.

The basic framework to study such problems is a Z2-graded algebra, a
graded derivation of the algebra, and a trace that satisfies some basic
cyclicity axioms. A basic result in this area is the association of a
cyclic cocycle to this structure, and the construction of a Chern charac-
ter for the derivation. In the commutative case, the construction re-
duces to the ordinary de Rham cohomology theory and its K-theory.
In the noncommutative case, the framework is more general.

13. COMPUTER VISUALIZATION AS A MATHEMATICAL TOOL

In recent years computer graphics have played an increasingly impor-
tant role in both core and applied mathematics, and the opportunities
for further utilization are enormous. One core area where visualiza-
tion has been of key significance is in the theory of surfaces. Complex
problems that appeared to be intractable have been either completely
or partially solved by insight gained from computer graphics.

One such example in surface theory, drawn from the study of soap
films, has a long history. A loop of wire immersed in a soapy solution
and then withdrawn will support a film of the soap solution character-
ized by its having the least area among all surfaces that have the given
wire loop as boundary. Finding this minimal surface is easily ex-
pressed as a problem in the calculus of variations and thus reduced to
the study of a certain partial differential equation, the minimal surface
equation. While the solutions of this equation are not difficult to
describe, at least in the small, the global behavior of the solutions is
very delicate, and many questions remain open.

These problems actliaHy have physical significance as well. For ex-
ample, any physical soap film will not cross itself (i.e., it is embed-
ded), but this property is difficult to determine from the standard
representation of the solutions to the minimal surface equation. In
fact, up until five years ago, there were only two known embedded
minimal surfaces that were complete in the sense that they had no
edges. These were the ordinary plane and a surface of revolution
called the catenoid. In fact, it had been conjectured that these were
the only complete embedded minimal surfaces in three-space.
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In 1983 a new example was found of a minimal surface that had the
topology of a torus punctured at three points. This surface seemed, by
evidence based on the theory of elliptic functions, to be a good candi-
datc for a counterexample to the above conjecture. However, the
complexity of the defining equations made a direct attack on the
embedding problem difficult. When a computer was used to make
sketches of the surface, the surface was seen to have extra symmetries
that had been overlooked in the purely analytic description. These
symmetries not only made the surface easier to visualize, but also
suggested a possible line of reasoning that eventually led to a proof
that the surface was indeed embedded, thus disproving the conjec-
ture. Moreover, features of this surface suggested a generalization
that allowed mathematicians to construct an infinite family of embed-
ded complete minimal surfaces. These new examples have invigo-
rated the subject of minimal surfaces in general, and recent progress
in the subject has been closely linked to computer graphics.

More general calculus-of-variations problems have recently been
approached by computer graphics techniques, which are invaluable in
formulating and testing conjectures. It is clear that our understanding
of global and stability problems in the calculus of variations is being
tremendously enhanced by computer graphics. As an example, in
1988 the first computer simulations and visualizations of soap bubble
clusters and other optimal energy configurations in three dimensions
were computed and displayed. In particular, this allowed close study
and experimentation with the geometry of the interfaces. Programs
were also developed that in principle allow the interactive construc-
tion of minimal area surfaces: draw a knot in space, specify the topo-
logical type of surface of interest, and the program will compute and
display a beautiful minimal surface in that class. Along similar lines,
it has been possible for the first time to compute and visualize some
striking crystalline minimal surfaces.

In an entirely different direction, a theory called 'automatic groups"
has been developed. This is the theory of that class of infinite groups
that can be analyzed by finite-04:e automata, for example, word prob-
lems that can be solved by computer; the theory involves issues simi-
lar to those used in constructing word-processing programs. Typical
automatic groups include the groups of geometry. A computer pro-
gram has already been used in explorations of the limit set of certain
quasi-fuchsian groups. More generally, the theory is required in order
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to make a catalog of hyperbolic three-manifolds by computer, an ef-
fort that is already well under way.

14. LIE ALGEBRAS AND PHASE TRANSITIONS

The past five or six years have seen a fascinating interplay between
various branches of pure mathematics and the physical theory of phase
transitions in a two-dimensional world. It should be noted that phys-
ics in two dimensions is not just a thwretical curiosity: surface phe-
nomena and thin films are much-studied experimental realizations of
the theories discussed here. The modern era started in 1944 when Lars
Onsager solved the lsing model of ferromagnetism for two-dimen-
sional lattices. The Ising model gives the simplest possible picture of
a magnet: "spins" that car point only "up" or "down" sit on the sites
of a space lattice and are coupled by pairwise short-range interactions
favoring parallel alignment. Onsager's solution showed, for the first
time, that a phase transition is accompanied by non-analytic behavior
of various physical quantities; for example, the spontaneous magneti-
zation vanishes at a rate proportional to (T TY as the temperature T
approaches its critical value T where pi is a characteristic exponent.
Subsequently, other exactly soluble statistical mechanical systems were
found, leading to a large din:: of completely integrable two .dimen-
sional models.

A remarkable feature found in all these models (and also in heuristic
studies of polymer systems, percolation problems, and other two-
dimensional systems) was that the characteristic exponents describing
the critical non-analyticities were always equal to rational numbers.
A deep result of the mathematical developments during the 1980s is
that these rational numbers are now understood to label representa-
tions of a symmetry algebra of the system, in much the same way that
the mysteries of atomic spectra in the beginning of the century were
understood in terms of the representation theory of the three-dimen-
sional rotation group.

One line of the development started with the introduction of a natural
set of infinite dimensional Lie algebras (Kac-Moody algebras), central
extensions of loop algebras of the classical Lie algebras. At the same
time another infinite dimensional Lie algebra, the Virasoro algebra,
entered physics in the dual resonance models and string theory. While
the dual models lost much of their interest for physicists in the 1970s,
there were important mathematical developments that grew from them:
for instance, the development of a formula for the determinant of the
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contragradient form of a highest-weight module of the Virasoro alge-
bra, formulas for the characters of integrable representations of the
Kac-Moody algebras, and the explicit construction of these representa-
tions in terms of vertex operators.

The statistical mechanical developments started in 1984 with the reali-
zation that the conformal invariance expected for a physical system at
a critical point is, in two dimensions, realized as a symmetry under
two Virasoro algebras. The particular central extension (parametrized
by a positive "charge" c) characterizes the physical system. The criti-
cal exponents turn out to be the highest weights of the representations
of the algebra. It was shown that there are very special representa-
tions, so-called degenerate ones for c < I, having special rational weights
and charges, and it was argued that some of these correspond to
known physical :-.sodels, the Ising model in particular. Subsequently,
it was shown that with the additional physical assumption of unitar-
ity, all the c < I critical statistical systems could be classified and all
their exponents computed. Translating this analysis to physical lan-
guage resulted in explicit computations of the asymptotic correlation
functions for the c < 1 theories, thus effectively showing that they are
all completely soluble.

Progress in the c > 1 theories has since been made using the theory of
Kac-Moody algebras. It was shown that these algebras occur as sym-
metry algebras of a two-dimensional field theory. The conformal
symmetry now turns out to be closely connected to the algebra of the
Kac-Moody symmetry: the Virasoro algebra is embedded in the envel-
oping algebra of the Kac-Moody algebra by an algebraic construction.
This provides many new concrete Virasoro representations, and more
importantly the so-called coset construction. It was shown that a
given representation of a Kac-Moody algebra leads to a host of Vira-
soro representations, corresponding to subalgebras of the Lie algebra.
Thus an even more general infinite family of critical statistical systems
was identified on the basis of symmetry. The possibility of classifying
so many, if not all, statistical mechanical systems exhibiting critIcal
behavior, albeit in two dimensions, would have been considered purely
utopian only ten years ago.

15. STRING THEORY

Some of the most exciting developments in recent mathematics have
their origin in the physicists' string theory, the so-called "theory of
everything." This development offers a classic example where a physical
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science required a great deal of sophisticated mathematics, much of
which had, surprisingly, already been worked out by mathematicians
pursuing other 'pure" mathematical motivations. The physical the-
ory returned the favor with a cornucopia of new intuitions and in-
sights. The turnaround time for such cross-fertilization may have set
speed records in this instance!

To the nonspecialist the most striking feature about string theory is
that it replaces the idea that the smallest idealized physical particle
might be thought of as a concentrated "point particle' with the idea of
exceedingly small but extended strings. A point particle moving through
space with time traces out a trajectory, called the "world line" of the
particle, which summarizes its physical history. A string moving
through space with time traces out a surface, called the °world sheet.'
The underlying mathematics of surfaces is much more sophisticated
than that of curves, so the basics of string theory are much more
complex than previous physical theories.

The entry of new mathematics into string theory is forced by prin-
ciples of invarianceone must eliminate superfluous parameters from
the description of the theory. Three such principles emerge: parameter
invariance on the string (the labeling of positions on the string is
physically irrelevant); conformal invariance on the world sheet (only
angles and not lengths are important prior to the appearance of mass);
and gauge invariance on the string (physical quantities will be inde-
pendent of the measuring frames of reference). This last principle has
already had a profound effect in physics and mathematics, being the
basis of all current descriptions of electromagnetism and elementary
particles. Parameter invariance calls upon the theory of an infinite-
dimensional symmetry group of the circle, the diffeomorphism group.
Gauge invariance calls upon the theory of the infinite-dimensional
Kac-Moody algebras and groups. These rose to prominence in mathe-
matics both for mathematical reasons and because of their use in
earlier physics as 'current algebras." Finally, conformal invariance
calls upon a vast wealth of algebraic geometry and moduli theory for
Riemann surfaces (Teichmuller theory). This is most surprising, since
previously algebraic geometry had seemed largely remote from the
physical world.

When matter appears and gravitational effects must be described,
current string theory calls for th. replacement of points in space-time
by very small closed six-dimensional surfaces! In order to reproduce
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the physics we already know at larger length scales, the geometry of
these surfaces will have to obey an analogue of Einstein's equations
from general relativity. These had already been studied by mathema-
ticians. Their work was motivated by algebraic geometry and partial
differential equations, the latter being classically the main vehicle for
exchange between mathematics and physics.

Many mathematical problems for future study have been posed by
string theory. The most significant appear related to the study of
surfaces considered up to conformal equivalence (as in conformal
invariance above), and the topology and geometry of other low-di-
mensional figures (three- and four-dimensional surfaces). Indeed,
Witten has developed a physical dictionary of the entirety of low-
dimensional geometry. This dictionary suggests, for physical reasons,
a long list of deep questions and constructions. For example, in the
study of knots in three-space, this physical picture contains whole
new outlooks on even the most subtle recent studies of knots (includ-
ing the Jones polynomial; see Section 10). On the other hand, string
physics is giving more shape and direction to our study of infinite-di-
mensional geometry. This will be an open task for years to come.

It is eerie and uncanny, both to physicists and mathematicians, that
what was considered central and important for pure or aesthetic rea-
sons by mathematicians has proved ultimately to be the same mathe-
matics required by physical theory. It should be emphasized that this
mathematics derives from a period considered the most abstract in the
history of the field.

16. INTERACTING PARTICLE SYSTEMS

This area of probability deals with configurations of particles that
evolve with time in a random manner. Typically, a particle moves,
dies, or gives birth according to its specified law, which depends only
on the state of the system in some neighborhood of the particle.

Interacting particle systems have their roots in the study of the Ising
model described above but now pertain to a wide variety of applica-
tions from the study of biological systems to image processing for
medical and defense purposes. The contact process, a basic model for
the spread of a biological population, was introduced in 1974. In
contrast to branching process models, this system allows there to be
only a bounded number of individuals per unit area. This physically
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reasonable constraint makes the system very difficult to study analyti-
cally. The basic properties of the one-dimensional case (linear growth
of the system when it survives and exponential decay of the survival
probability when it dies out) were settled early in this decade, but
only very recently have the corresponding facts been proved for the
important two-dimensional case.

Variations of the contact process with several types of particles are
now being applied to the study of competition of species and host-
parasite or predator-prey system. Other models more closely related
to percolation are being applied to the study of the recent forest fires
in Yellowstone. A third example is the study of the distribution and
dynamics of antarctic krill. This last system is particularly interesting
since it displays patterns on multiple spatial and temporal scales. The
preceding are just three of a growing list of examples that show inter-
acting particle systems are an appropr:..te framework for understand-
ing the mechanism at work in various ecological phenomena.

17. SFATIAL STATISTICS

The keen interest in the development of theory and methods for spa-
tial statistics is strongly driven by an array of applications including
remote sensing, resources estimation, agriculture and forestry, ocean-
ography, ecology, and environmental monitoring. The common thread
is the characterization and exploitation of proximity. Some of the
outstanding opportunities for future progress are outlined here.

In geophysical remote sensing, data arrive usually in gridded form,
commonly corrupted by unwanted atmospheric effects and positional
and measurement errors, often using multiple wavelength bands making
the data multivariate, and almost always in large quantities. Typical
questions are, How does one suppress errors, how does one combine
the information from different wavelengths, how does one extract
patterns, how well is one doing, how far can the data be pushed, and
what would be the value of additional data? Statistical approaches to
answering all such questions will be profoundly affected by proximity
considerations.

Procedures for suppression of unwanted effects must often make do
with weak specifications of those effects. Procedures for extracting
underlying patterns from the combination of multiband information
should be strongly guided by probabilistic models with sufficient rich-
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ness. On the other hand, estimates of statistical precision should be as
model-free as possible. These requirements present important chal-
lenges to research statisticians, with technical and computational dif-
ficulties considerably surpassing those associated with related prob-
lems in time series analysis or one-dimensional stochastic processes.

Spatial data for resources estimation and environmental monitoring
are typically not obtained on regular grids and are comparatively
sparse. With regard to resources estimation, while data obtained from
core drilling may have good vertical resolution, the cores may be
preferentially located in high-grade zones. What one usually wants is
an estimate of total reserves, the frequenc: distribution of resource
blocks, and a rational exploitation plan based on localized resource
estimates, together with measures of uncertainty to guide the need for
further exploration efforts. The original and still widely used statisti-
cal methodology, based fundamentally on Gaussian process model-
ing, is not particularly well adapted to the highly erratic nature of
resources data, and considerably more research is needed to deal
honestly with the particular qualities of resources data.

In environmental monitoring, highly impacted areas may be preferen-
tially sampled. The unevenness and selectivity of environmental data
present important challenges for statistical modeling and inference.
Furthermore, at each monitoring location there will typically be avail-
able a time series of data with seasonal variation. What one usually
wants to know is how environmental quality is changing. Since data
records are usually short in relation to the amount of change that can
be directly observed amidst large natural variability, a sound method-
ology is needed to combine information from multiple monitoring
locations. Also the augmentation and rearrangement of monitoring
resources require research in statistical &sign problems that goes
well beyond the simple idealized design problems for which we have
some answers.

During the last decade substantial strides have been made in the
development of appropriate theory and methods for solving spatial
problems using statistical tools. Thus the needed research described
above has a substantial foundation on which to build. An important
recent advance in spatial statistical research is the development and
application of flexible spatial Markov lattice models for image proc-
essing and the application of powerful techniques such as the Me-
tropolis algorithm for implementation of these models. Other devel-
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opments include spatial smoothing techniques that adjust :o the local
complexity of spatial patterns, dimensionality-reduction methodol-
ogy for multivariable spatial data based on spatial structure criteria,
development of mathematically tractable non-Gaussian spatial field
models for continuous parameter fields, non-linear non-parametric
spatial interpolation methods for discontinuous spatial fields, demon-
stration of the theoretical links between spline methods, kriging meth-
ods, and Wiener filters, and cross-validation methodology for cali-
brating spatial estimation techniques and assessing their precision.

18. STATISTICAL METHODS FOR QUALITY AND
PRODUCTIVITY

During the decades since World War 11 the industries that have raised
their productivity and the quality of their products have survived and
prospered. Those that have not have done poorly or gone out of busi-
ness. Statistical methods to analyze production processes are indis-
pensable tools for engineers to increase quality and prnductivity.

There are four areas of statistical methods that are particularly heavily
used: (1) statistical process control, (2) statistical experimental de-
5ign, (3) reliability, and (4) acceptance sampling. Statistical prxess
control consists of methods for assessing the behavior of an en&ineer-
ing process through time, in particular for spotting changes: the major
methods in this category are control charts, a topic in need of new
thinking. Most of the methods now in place go back decades and were
invented in an era when computation was done by hand and when
data we-e often assumed to be normally distributed since not doing so
led to intractable computation. For example, variability in control-
chart methods is often measured by the range of the data, an easy
number to compute. Control-chart methods need to be rethought
from the ground up.

Experimental design is a crucial technology for isolating factors that
can be changed to improve processes; thus, to achieve continuous
improvement of an engineering process, design experiments probing
the process must be continuously run. Most research in this area has
focused on understanding how the mean level of a response depends
on the factors; models are used in which the variance is either constant
or, if it varies, is viewed as a nuisance parameter. But for many
engineering processes, variance changes and is as crucial an ob;ect as
the change in mean level; this is the case, for example, in robust
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design. Robust design recognizes that the quality of most products
depends on a large number of factors. Some factors, referred to as
"control parameters," are inexpensive to control, while others, re-
ferred to as °noise parameters,' are costly or even impossible to con-
troL The goal is to design a product whose performance is insensitive,
or robust, to the noise parameters.

Methods of reliability are used to study the lifetimes of components
and systems and to relate these lifetimes to factors that determine
performance. In this area, the research community needs to develop
methods with which engineers can shift from analysis of time-to-fail-
ure measures to the analysis of measures ot degradation, which are
more informative. Also in this area, more work is needed on models
for data from accelerated failure-time experiments.

Acceptancy sampling consists of methods for inspecting a lot of a
product to determine if it is acceptable; in some cases every item in the
lot is tested, but more typically a sample of items is selected for
testing, and inferences made about the entire lot. New attacks on
methods are needed; some past work has suggested that Bayesian
approaches am a fruitful avenue to follow.

19. GRAPH MINORS

A minor of a graph is any graph obtained from a subgraph of the
original graph by contracting edges. A number of interrelated results
on graph minors, some in "pure" graph theory and some relevant to
the design of algonthms, are among recent achievements. The results
open up new avenues for research and suggest a number of problems
and opportunities.

An old and completely solved question in network flow theory sup-
poses that one is given a graph in which some vertices are called
"sources" and some are called °destinations." It is to be decided
whether there are, say, ten paths in the graph, running from the sources
to the destinations and not meeting one another. How can one pro-
gram a computer to decide this? Cne way is to list all the paths, and
try all combinations of ten of them, but that takes far too long, even
for quite a small graph. Fortunately (because this is a very important
problem, with a huge number of applications) there is another algo-
rithm more indirect but very efficient. Thus, this problem can be
viewed as completely solved.
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If the question is changed slightly, and it is posited instead that there
are ten sources and ten destinations and one requires the first path to
run from the first source to the first destination, the second path to
run from the second source to the second destination, what then? This
new problem is much more difficult. Even the two-paths problem
(with two sources and two destinations instead of ten) is difficult, and
until recently the three-paths problem was unsolved. One of the main
results about graph minors is that for any number (say ten), there is an
efficient algorithm to solve the ten-paths problem. ("Efficient" here is
used in a technical sense, meaning "with running time bounded by a
polynomial in the number of vertices of the graph.")

A second result was a proof of an old conjecture of Wagner, that in
any infinite collection of graphs there will be one containing another.
(A graph "contains" another if the second can be obtained from a
subgraph of the first by contracting edges.) This is of interest in
"pure" graph theory, but it also has algorithmic applications if it is
used in combination with the algorithm described earlier. For in-
stance, suppose that one wouId like to know if a certain graph can
physically be constructed, using wires for edges, in such a way that no
circuit of the graph is "knotted." No efficient algorithm is known to
decide this. But it follows that an efficient algorithm for the problem
exists, even though no one has found it yet.

One can show a similar result in great generality that has a consider-
able number of applications in theoretical computer science. Suppose
that it is desired to design an efficient algorithm to test if a graph has
a certain property. For some properties it is impossible to find such

an algorithm; but suppose that no graph with the property contains
any graph without the property. (For instance, the property of being
knotlessly constructible satisfies this condition.) Then there is an
efficient algorithm to test if a graph has the property, although it may
not have been found yet. It should be emphasized that knowing that
an efficient algorithm exists, even though one has not yet been found,
is an important and significant piece of information.

20. MATHEMATICAL ECONOMICS

Although mathematical discussion of the operation of markets began
in the last century, the first rigorous mathematical description of the
fundamental economics in the operation of markets came ir the late
1940s and early 1950s. This start culminated in the famous model of
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general equilibrium (GE) under the hypothesis of complete markets,
that all commodities can be bought and sold in markets that meet at
the same time, and with perfect credit. In equilibrium, supply equals
demand, and each household acts in its own interest, given its budget
constraint.

However, the complete-markets model just described suffers from a
major drawback. Planning for future contingencies is an essential part
of the economic allocation problem, and the GE model can be inter-
preted as incorporating time and uncertainty by indexing the com-
modities by event and date. The single budget constraint, however,
forces on this interpretation the unrealistic view that all trades are
negotiated at once. Recent work on incomplete market models that
remedy this difficulty has achieved significant progress and has opened
up a number of new questions and opportunities.

In the general equilibrium model with incomplete markets (GEI), agents
cannot trade all possible commodities at one time. For simplicity,
suppose that there are perishable commodities that can be consumed
at time zero, or under any of the S states of nature at time one. More-
over, agents may be wealthy in some states, and poor in others. At
time zero, agents are also allowed to trade a limited number of assets
that promise delivery in various combinations of the goods, depend-
ing on the state of nature. The stock of a firm, for example, is an asset
that delivers a large quantity of goods in those states when the pro-
duction plans work well, and many fewer goods otherwise.

Several very surprising properties can be shown to hold for GEI equi-
librium, using tools from differential topology. First, in great contrast
to the complete markets model, if there are fewer assets than states,
then the GEI equilibria are "generically" inefficient. Indeed the equili-
bria are inefficient not only because there are missing asset markets
but also because the markets that do exist are not used properly.

A more surprising attribute of the GEI model is the special properties
of monetary equilibria that it permits. If there is a comme-dity that has
no effect on utility, and is not part of the initial endowment of any
agent, such a good has two of the properties of money. If the assets
promise delivery in this money, then under the conditions of the
inefficiency theorem there are generically S 1 dimensions of distinct
equilibrium commodity allocations. Yet, if the asset market were
"complete," then there would be typically only isolated equilibria.
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Removing just one asset creates a jump in indeterminacy from zero
dimensions to S I dimensions; this dimension is constant no matter
how few assets there are. This result could not reasonably have been
predicted, and certainly not convincingly demonstrated, without the
aid of tools from differential topology. Note that without a money
good, there are typically a finite number of equilibria. In the GEI
model, money has a prominent role to play.

There is another application of these mathematical ideas to the CEI
model. It was thought for a long time that there might not be a GE]
equilibrium in any robust sense. The trick to the correct analysis of
the problem was to recognize that the GEI budget constraint can be re-
expressed in terms of the span of the monetary payoffs across the S
states, and hence in terms of a Grassman manifold constructed from
the state space. Arguments from degree theory show that the simulta-
neous equations defined by GE] equilibrium on this Grassman mani-
fold generically have a solution.

21. PARALLEL ALGORITHMS AND ARCHITECTURES

Dramatic advances in computer fabrication technology have had an
equally dramatic effect on the way that we use computers. For ex-
ample, the most powerful computers today actually consist of many
smaller component processors (i.e., chips) that are integrated together
to form a single parallel machine. In a parallel machine, the proces-
sors are usually traditional sequential machines that are working
together to solve a single large problem. By collecting N processors
together to work on a single task, one hopes to perform the task N
times faster than with only one processor. Although it seems intuitive
that N processors should be able to solve a problem N times as fast as
a single processor, this is not always possible. In fact, it can be very
hard *to design parallel algorithms for N-processor machines that run
N times faster than on a uni-processor machine.

As a very elementary example of what can go wrong when one tries to
parallelize a sequential algorithm, consider the "trivial" task of add-
ing two N-digit numbers. Addition is certainly easy to perform in N
steps sequentially, but can we do it in one step with N parallel proces-
sors? In fact, we cannot. Even worse, at first glance it would seem
that we cannot solve the addition problem any faster with N proces-
sors than we can with one processor because before one can compute
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any digit in the sum, one needs to know if there is a carry from the
next digit to the right and so on. Therefore, the addition example
seems to be very discouraging at first, for if one cannot efficicntly
parallelize addition, then what hope can there be for efficiently paral-
lelizing other problems?

Fortunately, it is now possible to derive fast parallel algorithms for
many important scientific and engineering computing problems. For
example, in the simple case of addition, there is an algorithm that
takes just log(IV) steps using N/log(N) processors, although, as we
have just seen, it is not at all obvious that such an algorithm exists. In
fact, dramatic progress has been made in the last five years in uncov-
ering nontrivial and highly efficient methods for paraHelizing impor-
tant problems that seem to be inherently sequential. Examples in-
clude algorithms for arithmetic, matrix calculations, polynomial
manipulation, differential equations, graph connectivity, pointer
jumping, tree contraction and evaluation, graph matching and inde-
pendent set problems, linear programming, computational geometry,
string matching, and dynamic programming.

Much progress has also been made on the problems inherent in de-
signing parallel machines. For example, a variety of clever communi-
cation networks have been invented for linking the processors of a
parallel machine together, and fast algorithms have been developed
for routing the right data to the right place at the right time. This
work has been highly mathematical in nature, drawing extensively on
techniques from combinatorics, probabilistic analysis, and algebra.
Indeed, parallel computers commonly use combinatorial-based inter-
connection networks and routing algorithms. Again, many opportuni-
ties for further advances flow from these already substantial achieve-
ments.

22. RANDOMIZED ALGORITHMS

Over the past 15 years computer scientists have come to recognize the
many advantages of algorithms that toss coins in the course of their
execution. For a wide variety of tasks, ranging from testing whether a
number is prime to allocating resources in distributed computer sys-
tems, the simplest and most efficient algorithms currently known are
randomized ones. Therefore, expanding our understanding of such
algorithms is a challenge and opportunity for the future.
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Almost from the beginning of the computer era, random number
generators have been applied to the simulation of complex systems
involving queueing and other stochastic phenomena and to the esti-
mation of multidimensional integrals and other mathematical quanti-
ties, using various sophisticated sampling techniques known collec-
tively as the Monte Carlo method.

A major factor in drawing the attention of computer scientists to the
wider uses of randomization was the discovery, around 1975, of two
efficient randomized algorithms for checking whether a number is
prime. Each of these algo:.I.Ims is based on the concept of a witness
to the compositeness of a number. A simple illustration of this con-
cept is based on a theorem due to Fermat, which says that if n is a
prime number, then, for any integer m that is not a multiple of n,

" - 1 is a multiple of n. If this calculation is performed for some
m, and one does not get the result predicted by Fermat's theorem, then
n is composite (i.e., not prime); in this case, m is called a witness to the
compositeness of n. ThP tests mentioned are based on slightly more
complicated kinds of witnesses. The effectiveness of these tests stems
from theorems that show that, if n is composite, then most of the
integers between 1 and n - I will serve as witnesses. An interesting
aspect of these tests is that they do not provide witnesses for primal-
ity, but this weakness was rectified in work that defined witnesses for
primality rather than compositeness, showing that if n is prime, most
randomly chosen numbers will bear witness to that fact. There are
many other randomized algorithms based on the abundance of wit-
nesses.

Randomized techniques have also proved to be a very effective tool
for algorithm construction in the areas of sorting, searching, and
computational geometry. A simple illustration is the problem of list-
ing all intersections among a set of line segments in the plane. There
is a fairly obvious incremental algorithm that considers the segments
one at a time and reports the intersections of each new segment with
all the previous ones. If the segments are read in a particularly unfor-
tunate order then the run time of this algorithm will be excessively
long; however, it can be shown that if the segments are processed in a
random order, then with extremely high probability the algorithm
will be very fast.

In addition, randomization plays a crucially important role in the
design of distributed computing systems, in which many geographi-
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cally dispersed computers connected by suitable communication links
work together as a single system. Such systems must cope with the
possibility that individual computers or communication links may fail
or may run synchronously at different speeds, and must ensure that
the overhead of communication between processors will not become
an insurmountable obstacle. Randomization is particularly effective
in allocating computational tasks to the individual processors and in
choosing the communication paths along which data shall flow. It can
be shown in a variety of settings that random allocation of tasks to
processors and data to memory modules, together with randomized
routing of messages, yields near-optimal performance with high proba-
bility.

All the applications of randomization that we have mentioned depend
on the assumption that algorithms, or computer programs, have ac-
cess to a stream of independent random bits. More commonly, com-
puters use pseudorandom numbers that are generated from an initial
number, called the seed, by some purely deterministic iterative proc-
ess. These generators are typically subjected to certain statistical tests
in order to confirm that the streams of numbers they generate have
some of the properties of random sequences, even though they are
generated by a purely deterministic process. Currently, a deep line of
research into the properties of pseudorandom number generators is
being pursued. The goal of this research is to show that, as long as the
seed is random, the output of the generator cannot be distinguished
from a purely random sequence by any polynomial-time computa-
tional test whatsoever.

Finally, recent theoretical research has focused on a connection be-
tween pseudorandom generators and the concept of a one-way func-
tion, which is fundamental in cryptography. A one-way function is a
function that is easy to compute but hard to invert. It has been shown
that any one-way function can be used to construct a rigorously justi-
fied pseudorandom number generator. Unfortunately, researchers in
computational complexity theory have not yet determined whether
one-way functions even exist. This is one of the many important
problems remaining to be addressed.

23. THE FAST MULTIPOLE ALGORITHM

There are great opportunities for progress in algorithms dealing with
problems such as particle beams in plasma physics, underwater acous-
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tics, molecular modeling, and even very important aspects of aerody-
namics. A basic calculation of central importance in these applica-
tions is the calculating of interactions in a many-particle system. These
interactions are often long-range, so all pairs of particles must be
considered. Because of the latter constraint, the direct calculation of
all interactions requires on the order of N2 operations in a system with
N particles. We will refer to this calculation as the N-body potential
problem.

There have been a number of efforts aimed at reducing the computa-
tional complexity of the N-body potential problem. The oldest ap-
proach is that of particle-in-cell (PIC) methods, requiring on the order
of N log(N) operations. Unfortunately, they also require a mesh that
provides limited resolution and is inefficient when the particle distri-
bution is nonuniform. A more recent approach is that of the 'nierarchi-
cal solvers, which are gridless methods for many-body simulations,
having computational complexities also estimated to be of order
N log(N).

The Fast Multipole Method (FMM), which hes recently been devel-
oped, requires an amount of work only proportional to N to evaluate
all pairwise interactions to within roundoff error, irrespective of the
particle distribution. Like the hierarchical solvers, the FMM is a di-
vide-and-conquer algorithm, based on the idea of clustering particles
on a variety of spatial length scales. The method is in fact based on a
combination of physics (multipole expansions), mathematics (approxi-
mation theory), and computer science, and its use in applications is
growing.

There are several immediate industrial applications for the techniques
being developed. The payoff should be substantial and almost imme-
diate in the straightforward use of particle simulations. Simulations
of this type are perfonned in the modeling of high-powered electron
beam microwave devices (e.g., gyrotrons and free-electron lasers),
particle beams, controlled fusion devices, and so forth.

A second immediate industrial application is in molecular dynamics,
a technique for studying the properties of fluids (and other phases of
matter) by computer simulation. Once initial positions and velocities
are chosen for some number of representative particles, their trajecto-
ries are followed by integrating Newton's second law of motion. In
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early simulations, only nonpolar fluids were comidered, where the
amount of computation per time step is proportional to the number of
particles N. In polar fluids, the situation is quite different. A coulom-
bic term is added to the potential function aryl all pairwise interac-
tions need to be accounted for, a standard N-body calculation. The
FMM allows for the simulation of much larger chemical systems than
was previously possible. The study of a protein molecule in water, for
example, requires following the motion of tens of thousands of atoms
over tens of thousands of time steps. Real gains are possible in the
long term, beginning with detailed theoretical studies of chemical
kinetics.

24. INTERIOR POINT METHODS FOR LINEAR PROGRAMMING
Many problems in resource allocation can be modeled by what is
called the linear programming" problem, in which one attempts to
optimize a linear function over the vertices of a multidimensional
polytope. The traditional Simplex algorithm for this problem, which
works by traveling along the boundary of the polytope, has had immense
value and influence during the 40 years since it was di4covered. It has
a significant theoretical drawback, however: its running time can, in
pathological cases, grow as an exponential function of the number of
variables. Much more desirable, at least from a theoretical point of
view, would be an algorithm with polynomially bounded worst-case
running time.

In 1996, the first such algorithm, the Ellipsoid method, was discov-
ered. Its running time was OWL% where n is the number of variables
and L is a measure of the number of bits needed to describe the input.
This algorithm has the additional desirable property that it applies to
more general "convex programming." Moreover, it does not require a
complete description of the convex body over which optimization is to
take place, but merely a "black box" subroutine that, given a point,
tells whether that point is in the polytope, and if it is not, will identify
a hyperplane that separates the point from the polytope. The Ellip-
soid method is thus applicable to a much broader class of problems
than is the Simplex method, and its existence has led to a wide variety
of polynomial-time algorithms for previously open problems. Forlinear programming, however, researchers quickly discovered that its
improved worst-case running-time bound did not correlate with bet-
ter performance in practice.

I. 3
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Polynomial-time programming algorithms thus seemed an impractical
theoretical nicety. In 1984 this was changed with the introduction of

a new breed of polynomial-time linear programming algorithm, based

on a clever variant of an old idea. The idea, one that had been aban-
doned long ago as impractical, is to cut across the interior of the

polytope in searching for an optimum vertex, rather than traversing
the outside as does Simplex. The difficulty in making such an "inte-

rior poinr approach work lies in finding the right direction and dis-
tance to travel at each step. The solution involves the use of projective
transformations and a logarithmic potential function to guide the search,

and yields a running time of 0(n3-51.2). The theoretical improvement
over the Ellipsoid method running time was not the main story, however;

more important, this algorithm (along with several of its variants)
appears to be competitive with Simplex when implemented with

appropriate sparse matrix techniques. Moreover, it appears to have

substantial running-time advantages for large and/or degenerate in-
stances. Indeed, important practical applications have been found in

the design of large telecommunicatim networks and in the solution of
large-scale logistics planning and scheduling problems.

Since the first reports of the potential practicality of the approach,
there has been a torrent of research on interior point methods. Rela-
tions between this algorithm and earlier algorithms have been exten-
sively explored. For instance, the algorithm can be viewed as a type of
"logarithmic barrier function" algo:ithm, or even as an application of
Newton's method (in an appropriately transformed space). In the
limit of infinitesimal step length, it generates a vector field inside the
polytope, all of whose limiting trajectories go to the optimal vertex. In
this context, it can be viewed as attempting to follow such a trajectory
approximately, by taking short steps along tangent lines. This in turn
suggests variants in which one steps along curves that represent higher-
order power series approximations to the vector field. Other variants
concentrate on approximately following a particular trajectory, the so-
called 'central trajectory." These latter have led to better and better
worst-case running times, with the current champion having a run-
ning time of O(n"L2), based on a clever use of recent developments in
the field of fast matrix multiplication.

New algorithms and insights continue to pour forth at a rapid rate,
and although it seems unlikely that this will lead to polync
solutions for the much hardei NP-complete problems, there is much
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hope that the interior point approach will greatly extend the range of
problems for which useful answers can be determined.

25. STOCHASTIC LINEAR PROGRAMMING

Deterministic models for linear programming problems and their so-
lutions, ever since their first appearance 40 years ago, have been keep-
ing pace with the extraordinary advances that have taken place in
computing power. At the present time, irdustry and government
routinely solve models in which there is no uncertainty; that is, they
solve deterministic linear and mathematical programs for planning
and scheduling purposes, some involving many thousands of vari-
ables with a linear or nonlinear objective function and many thou-
sands of inequality constraints. These assume, for example, that
knowledge about what future technologies will be available to choose
from is known with certainty. As a result, the solutions obtained from
deterministic models are incomplete because they do not properly
take account of future contingencies. Although it is easy to reformu-
late the mathematical models to include uncertainty, the resulting size
of the mathematical systems to be solved becomes too enormous in
most practical applications. The bottleneck to solving stochastic pro-
grams has been (and is) calculating capability.

Therefore, despite the progress made, there remains an unresolved
class of decision problems of great importance: that of finding an
°optimal" solution to stochastic mathematical and linear programs.
Stochastic here means uncertainty about, for example, the availability
of resources, foreign competition, or the effects of possible political
upheavals. Since such problems concern the optimal allocation of
scarce resources under uncertainty, it is of fundamental importance to
include uncertainty in the problem setup. If such problems could be
solved in general, it would significantly advance our ability to plan
and schedule complex situations.

At the present time there is intense activity taking place in the United
States and elsewhere to solve certain relevant classes of stochastic
hnear and nonlinear programs. Important new developments in
computer hardware are spurring this effort, particularly the availabil-
ity of multiple vector processor mainframes and parallel processors.
It is hoped that the combination of three techniquesimproved ways
to mathematically decompose large-scale problems into smaller ones,
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improved techniques of Monte Carlo (importance) sampling, and the
use of parallel processorswill bring about important advances in the
relatively near future.

26. APPLICATIONS OF STATISTICS TO DNA. STRUCTURE

A strand of DNA can be represented as a string of bases, A,C,G,T, that
carries the information governing the growth and function of an or-
ganism. Great effort has therefore been expended in determining
DNA sequences. Rapid sequencing methods were introduced in 1976
and were followed by an explosion in quantitative genetic informa-
tion. Today over 25 million letters of sequence have been determined,
in segments averaging length 1000, from a wide variety of organisms.
Improvements in sequencing technology continue to be made, and the
associated discoveries in basic biology are staggering.

Two kinds of maps are constructed for DNA: genetic maps and physi-
cal maps. Both types are generated from the use of restriction en-
zymes that cut DNA at specific patterns in the sequence, producing
fragments whose lengths can be measured with some degree of inher-
ent experimental error. It was suggested in 1980 that slight variations
in DNA sequence could produce differing restriction fragment lengths
that could be used as "markers"traitsthat could be approximately
mapped to specific locations on specific chromosomes. The amount of
data subsequently available has created a number of new statistical
problems.

Physical maps give the relative locations of identifiable and clonable
pieces of DNA. Availability of a physical map facilitates the complete
sequencing of a DNA strand. Given the mapped lot tions of a com-
plete library of cloneseach having a length on the order of several
tens of thousands of nucleotidesa number of laboratories in coordi-
nation could then proceed simultaneously to sequence the individual
clones. We can expect statistical analysis of design options, such as
number and choice of cutting enzymes, to yield benefits in the map-
ping process. The process of physically locating clones along the
genome should be substantially facilitated by an understanding of the
design parameters and sources of variation inherent in the process.

Obtaining DNA sequence data is only a first step in modern molecular
biology. The sequence is next subjected to extensive analysis, to relate
it to what is already understood about DNA sequences. Because
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evolution operates to preserve biological features of importance, in-
cluding sequence features, these analyses can be very important in
understanding the function of specific portions of the sequence. Use
of computers to implement complex algorithms is often required;
mathematical analysis of algorithms is essential, both to ensure an
unambiguous, informative interpretation of the results and to ensure
that a programmed algorithm will complete its operations rapidly
enough.

The study of molecular evolution has developed with the ability to
read DNA and protein sequences. It is just now becoming possible to
sample the seoaence for a gene within a defined population. This
opens up many new questions. How does molecular evolution pro-
ceed, in the long term and in the short term? Constructing evolution-
ary trees and determining rates of evolution can both be accomplished
with stochastic process models of molecular evolution. Some of the
most central work goes into identifying protein coding regions or
genes in DNA. Locating a gene of 600 letters that is spread out in
small segments along 10,0u0 or 20,000 letters of DNA is a daunting but
essential task, r_luiring sophisticated combinatorial and statistical
analysis.

The science of molecular biology is currently undergoing rapid treat-
ment. The a.lticipated quantity of DNA and protein sequence data
makes it an area ripe for mathematical development. The nature of
the science makes it necessary that mathematical and biological scien-
tists closely communicate. Both sciences will surely benefit from such
collaborative effort.

27. BIOSTATISTICS AND EPIDEMIOLOGY

Epidemiology concerns the distribution and determinants of disease
in human populations. It encompasses such varied subjects as the
worldwide geographic variation in disease incidence rates, the setting
of radiation exposure standards in the workplace, and the evaluation
of vaccine efficacy using randomized field trials.

Two distinct study designs, cohort and case-control, are used for much
of the research in chronic disease epidemiology. In cohort studies,
exposures and covariables are measured on a defined population of
disease-free persons, who are then followed forward in time to deter-
mine which ones develop or die from the disease of interest. The
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methods and concepts of survival analysis, particularly the propor-
tional hazards regression model, have' greatly affected the statistical

treatment of cohort data. They provide a mathematically rigorous
framework for elaboration of the key epidemiologic notions of inci-

dence rate and relative risk. Older epidemiologic techniques are given

a new interpretation in terms of classical statistical theory, while the

way is paved for the development of more flexible and powerful methods

of data analysis.

Case-control studies involve samples of diseased and nondiseased
persons whose history of exposure is known. The demonstration that

the exposure odds ratio calculated from case-control data approxi-

mates the ratio of disease incidence rates among exposed and nonex-

posed was of paramount importance in establishing the scientific

validity of this &sign. More recently, biostatisticians and economet-

ricians independentl,, have developed methods for the analysis of

case-control and othei data where the sample is selected on the basis

of the outcome of primA y interest. Further elaboration of this meth-

odology is needed to handle more general stratified designs and for

situations where only partial information is available for a large number

of the sampled subjects.

Additional work is needed also on methods of analysis of epidemiol-
ogic data with dependent outcomes, such as arise in longitudinal studies

with repeated measurements on the same person over time or in se -

netic studies of the patterns of disease in families. Better techniques

are needed for assessing the magnitude of measurement errors and to

correct for the tendency of such errors to dilute the obs..rved associa-

tion between expowre and disease. Recent advances in statistical
computing and in the stati5tical theory of quasi-likelihood analysis

based on generalized estimating equations promise rapid advances in

this field.

Finally, AIDS, the major epidemic of our time, poses urgent challenges

to the biostatistician and epidemiologist. One problem is to estimete
the past, present, and future rates of infection with HIV so as io
determine the future number of AIDS cases. Another is to understane
better the patterns of HIV transmission within and between various
pools of susceptible individuals so as to be able to plan the optima;

organization of community resources for the prevention of furiher
infection. The collection of data related to AIDS is seldom routine and

often suffers from a lack of key pieces of information, so that studies
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are rarely amenable in straightforward analysis. Mathematically, the
problem of estimating HIV infection rates, using dMa on AIDS inci-
dence rates and the distribution of time from infection to diagnosis,
can be viewed as an unusual type of deconvolution problem. It is
related to problems that occur in the field of image processing, where
rapid progress has been made. But the lack or poor nature of key
types of data makes it mach more formidable.

NOTE

1Go1dhammer, M. L, and Rubbert, P. E., "C.F.D. in design: An airframe perspective,"
Proceedings of the 27th Aerospace Sciences Meeting, January 9-12, 1989, Publication Num-
ber 89-0092 (Amerkan Institute of Aeronautics & Astronautic , Washington, D.C.).
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